פילוסופיה - אי שלמות שואפת לאינסוף - חלק 1... הנחות, כמה שיותר הוכחות. המתמטיקאים עצמם שאלו: אולי נשמיט עוד אקסיומה ונקבל בניין יותר חזק? כאן מתעוררת בעיה: כל חכמולוג יכול להחליט לזרוק איזו אקסיומה שמתחשק לו, אבל אז יתמוטט כל הבניין. החוכמה היא לבנות מחדש בניין יציב על האקסיומות שנותרו! כמה מתמטיקאים (הבולט שבהם גאוס, 1777 - 1855) נטפלו לאקסיומה החמישית ... 32 מכאן ניתן להבין כמה קשה היה לקבל שאפס הוא מספר עד שהערבים הביאו אותו מהודו. אבל אז בא חכם אחד ושאל: אם המספרים הולכים ויורדים באחד עד האפס, מה יקרה אם נמשיך ונחסר אחד מהאפס עצמו? כך נולדו ... מהר התברר שהמספרים המשונים האלה יכולים לעזור הרבה בבעיות מעשיות, כמו לאפשר לבנק לשמור לנו מינוס. כיוון שכך, בא חכם יותר גדול ושאל: מה השורש הריבועי של מספר שלילי כזה? וזה כבר בהחלט מוגזם. שורש ריבועי של 4, למשל, ... אבל הכפלה של כל מספר בעצמו, אפילו אם הוא שלילי, נותנת מספר חיובי! הפיתגוראים, מן הסתם, היו מזמינים את החכם הזה לטיול קצר בים כמו שעשו להיפסוס, אבל בדור ההוא - זו הייתה איטליה של ראשית הרנסאנס, אליה נתוודע ... אקסיומה בודדת כזאת תיאוריה המסבירה כל דבר, אבל מהתיאוריה הזאת, כפי שתראו בהמשך, לא ינבע שום ניבוי חדש. במדע, החוכמה היא להשמיט את האקסיומה הנכונה - נכון יותר: הלא נכונה - ורק אז, על הבסיס הנותר, יתרומם בניין גדול ...