פילוסופיה - אי שלמות שואפת לאינסוף - חלק 2... 2 פילוסופיה - אי שלמות שואפת לאינסוף - חלק 1. שעשועים כבדי - ראש ראינו ששיטת ההוכחה שהנהיג אוקלידס במתמטיקה היא תובענית הרבה יותר מההוכחה המדעית באמצעות ניסוי: שום מתמטיקאי לא יעיז להוכיח טענה כלשהי על סמך בדיקת מיליון דוגמאות, כי כבר קרה שרק המקרה המיליארד ומשהו הכזיב! 39 ... תהליכים הקיימים בטבע, מסידורי עלים על הגבעול ומבנה הקונכיות ועד צורת הגלקסיות. שעשוע דומה מציג משולש הקרוי על שם המתמטיקאי הצרפתי בלייז פסקל (1623 - 1662) אבל תואר כבר בידי המשורר והאסטרונום הפרסי עומר כיאם (1048 - 1122). זהו ... אנחנו, לאור המחלוקת בין אפלטון ואריסטו, צריכים להחליט שלא ניתן ליופי להסיט אותנו מהאמת. לצד העיסוק ביופיין של הפיזיקה והמתמטיקה, בואו ניתן דעתנו על שני מומים המתגלים בשתי הגברות האלה אחרי בדיקה יותר פולשנית. שתיהן מתחרות על כתר מלכת ... המציאות כמו חומר, אנרגיה, מרחב וזמן, ולכן כל שאר המדעים, העוסקים בתופעות מורכבות יותר, הם ענפי - משנה שלה. המתמטיקה, מצד שני, טוענת שאינה מוגבלת רק למציאות הידועה לנו. כל מציאות שנוכל להעלות בדמיוננו, כל עוד שולטים בה חוקים קבועים, ויהיו אלה הביזאריים ביותר, תוכל המתמטיקה לתאר אותם, ולכן היא יסודית יותר מהפיזיקה. בואו נראה מה נוכל ללמוד מוויכוח זה. הפיזיקה היא מדע ניסיוני, כלומר ... שדבר כל כך מהותי כמו הסיבתיות קיים רק בראש שלנו ואנחנו מלבישים אותו על מציאות שאיננו יודעים מה היא. המתמטיקאים אהבו לנפנף בנקודת העיוורון הזאת של המדע הניסיוני עד שאחד משלהם עשה להם תעלול וערער את הבסיס המקביל של המקצוע שלהם. המדע, כפי שראינו, משתמש באינדוקציה, הסקה ממקרה פרטי על הכלל. המתמטיקה, לעומת זאת, משתמשת בדדוקציה, כלומר הנחת עיקרון ראשוני שממנו נגזרות מסקנות ספציפיות יותר. כמובן, העיקרון הראשוני הזה אינו נובע מהניסיון, כי זה תחומו של המדע. לכן, כל מערכת של הנחות - יסוד היא חוקית בעיני המתמטיקאי כל עוד היא עקבית, כלומר, לא ניתן לגזור ממנה סתירה - דבר והיפוכו. אמרו אנשים: בואו נבנה את כל המתמטיקה כמו שאוקלידס בנה את הגיאומטריה, כלומר נבדוק מה המינימום של הנחות - יסוד שמהן נגזור את כל טענות המתמטיקה (כולל הגיאומטריה, שחזרה עכשיו להיות ענף של המתמטיקה). טובי המוחות של המאות ה - 19 וה - 20 נרתמו למרוץ הזה, וגילו הרבה דברים יפים בדרך. ואז הופיע בחור בן עשרים וחמש בשם קורט גדל (1906 - 1978) והוכיח שכל מערכת עקבית של הנחות מתמטיות חייבת לכלול טענות שלא ניתן להוכיחן בתוך אותה מערכת. גדל עצמו, שהיה אפלטוניסט, הסיק מהוכחת אי - השלמות שלו מסקנה מרחיקת - לכת מאוד: האמת חורגת מגבולות ההינתנות - להוכחה. 11 המתמטיקה, עם ההיגיון הצרוף והמושלם שלה, תצטרך לחיות עם העובדה שייתכנו בתוך עולמה דברים אמיתיים שלא יהיה בכוחה להוכיחם. באופן ...