פילוסופיה - אי שלמות שואפת לאינסוף - חלק 2... שרק המקרה המיליארד ומשהו הכזיב! 39 ההוכחה צריכה להיות עקרונית, בלי קשר לניסיון. הנה, לדוגמה, הטענה שכל סכום של מספרים אי - זוגיים עוקבים המתחיל מ - 1 נותן מספר ריבועי, למשל, 1 + 3=22. במקרה זה, ההוכחה העקרונית קלה להמחשה ויזואלית. את כל המספרים האי - זוגיים מה - 1 ומעלה אפשר לצייר כקבוצות ריבועים היוצרים צורות ר שצלעותיהן שוות, והן הולכות וגדלות ... חושבים אנשים שהוכחה כזאת היא יפה? כי על סמך צעדים לוגיים בודדים אנחנו יודעים משהו בוודאות על כל צירופי המספרים מהסוג הזה. לא סתם מועט המחזיק את המרובה אלא מועט המחזיק את האינסוף! הוכחות כאלה, הנכונות עד לאינסוף, הולידו ... חדשות של יופי וגם הבנות חדשות של המציאות. לאונארדו פיבונצי (1170 - 1250) תהה מה יקרה אם ניצור טור מספרים שבו כל מספר הוא סכום שני המספרים הקודמים. הוא כתב, אם כן, 0, 1, 1, 2, 3, 5, 8, 13, וקיבל מקור בלתי - נדלה של ... מספר בסדרה וחברו אותו עם כל קודמיו: תקבלו סכום השווה למספר השני הבא אחריו פחות אחד. לדוגמה, סכום חמשת המספרים הראשונים, 1 + 1 + 2 + 3 + 5, שווה לסכום המספר השביעי, 13, פחות אחד. יש לסדרה ... (1623 - 1662) אבל תואר כבר בידי המשורר והאסטרונום הפרסי עומר כיאם (1048 - 1122). זהו מבנה העשוי משורות מספרים שכל מספר בהן הוא סכום שני המספרים מימין ומשמאל בשורה מעליו. גם כאן התברר שאין גבול לתכונות המפליאות של המשולש. כך למשל, סכום אברי כל שורה ... ביניהם. 24 (20) רוצים דוגמה? בבקשה: לכו אל סדרת פיבונאצי לעיל, קחו אחד ממספריה וחלקו אותו במספר הקודם. זוגות המספרים הראשונים יתנו מנות פשוטות כמו 1 או 1 / 2, אבל ככל שתעלו בסדרת המספרים תראו שבר ההולך ונראה כמו... 1. 618 נכון, זה יהיה מיודענו פי. המשותף לכל המשחקים האלה הוא ש - ...