פילוסופיה - אי שלמות שואפת לאינסוף - חלק 1... מושג המספר כך החלו ערעורים במתמטיקה גם נגד יסודות תורת פיתגורס. ברור שהרבה מהמתמטיקה של הפיתגוראים הייתה סתם נומרולוגיה: מספרים זוגיים נחשבו נקביים ואי - זוגיים זכריים, ובהמשך נעשו חלקם קדושים ואחרים טמאים וכך נפרץ סכר השטויות. כמו כן ... אורכו לאורך אחד הניצבים, נגלה ששום מידה בעולם - סנטימטרים, בלאטות, אצבעות - לא תוכל לבטא את היחס הזה במספרים רגילים כמו 3: 2, בסתם שבר כמו 352 / 361, או אפילו במספר עשרוני מחזורי כמו 30. 33. כל ... למספר כזה אנו קוראים כיום אי - רציונאלי, לומר, לא - חלוקתי (יחס = ratio). זה היה הראשון במשפחת מספרים כאלה שהתגלו כבעלי חשיבות עליונה, כמו הפי היווני, המוכר יותר בהיגויו האנגלי פי, שהוא היחס בין היקף מעגל לקוטרו:... 3. 141592. הייתה זו מהלומה לאמונה שהמספרים השלמים הם יסוד העולם. מה שעצוב הוא שלעובדה הלא - יפה הזאת, דהיינו היעדר המידה המשותפת, יש הוכחה מוחצת ... אפילו אם אינו מוביל לשפיכות דמים, מסוגל להתעות למקומות בהחלט לא יפים. מושג המספר המשיך להתרחב גם אחרי הכנסת המספרים האירציונליים. אמנם המספרים עצמם הם משהו דמיוני, אבל אנחנו יכולים לפחות להלביש בהם משהו - קלמנטינות, חושחשים וכדומה. בהדרגה הופיעו מספרים יותר ויותר מוזרים. כדאי לציין כי בימי קדם אפילו אחד לא נחשב למספר כי מספר היה, מעצם הגדרתו, רבים! ... כמה קשה היה לקבל שאפס הוא מספר עד שהערבים הביאו אותו מהודו. אבל אז בא חכם אחד ושאל: אם המספרים הולכים ויורדים באחד עד האפס, מה יקרה אם נמשיך ונחסר אחד מהאפס עצמו? כך נולדו המספרים השליליים, 1 -, 2 - וכו והיה צורך להרחיב את האריתמטיקה כדי שתוכל לטפל גם בהם. חיש מהר התברר שהמספרים המשונים האלה יכולים לעזור הרבה בבעיות מעשיות, כמו לאפשר לבנק לשמור לנו מינוס. כיוון שכך, בא חכם יותר גדול ... מתמטיקאים שדווקא שמחו שהוא מספק להם תעסוקה. הם סימנו את המספר המשונה ב i (מלשון imaginary) והמציאו עבורו ציר מספרים מדומים, ניצב לציר המקובל, ועליו סידרו את כל השורשים הבלתי - אפשריים האלה: i, שהוא השורש הריבועי של 1 -, ואחריו 2i, 3i וכו. גם הפעם, מתחת לאפס הוסיפו מספרים מדומים שליליים, i -, 2i -, 3i - וכו, כך שהתקבל ציר מספרים שלם המאונך לציר הרגיל. על מערכת - הצירים הדו - ממדית הזאת בנו תחום מתמטי חדש. עכשיו לכו תנסו ... תיתן קלמנטינה שלילית, שהעלאתה בריבוע תיתן סוף - סוף קלמנטינה שאפשר לאכול. צחוק צחוק, אבל גם כאן קרה הפלא: המספרים המדומים התגלו כשלב הכרחי בפתרון הרבה בעיות מעשיות. במאה ה - 19 נמצא להם שימוש גם בתיאוריה האלקטרומגנטית ובמאה ... קלמנטינות חלים גם על שלושה סטרפטוקוקים, שלושה גניקולוגים ועל כל שאר העצמים - רק הלכה והעמיקה מאז, כי תורת המספרים היא רק הקומה הראשונה בבניין המתמטיקה. אם השלוש המופשט הוא מושג החל על כל העצמים, בואו נחשוב על מושג מופשט יותר, נאמר x, החל על כל המספרים. אם מעולם לא ראינו את השלוש עצמו, במנותק ממיקרובים או מרופאים, בוודאי שמעולם לא ראינו x. האם גם ההפשטה ... גם שמו של אל - כוריזמי עצמו התגלגל למושג האלגוריתם, המציין שורה קבועה של פעולות מתמטיות. האלגברה מחליפה את המספרים בנעלמים (אותיות), ואלה מגלים חוקיות יסודית יותר. זהו צעד נוסף בהפשטה המתמטית: כמו שהשוויון האריתמטי 3 + 3=6 נכון לגבי כל שלישייה ושישייה של עצמים שנציב במקום שני המספרים, כך גם השוויון האלגברי נכון לגבי כל שלושה מספרים שנציב במקום שלושת הנעלמים. הנה חידה אלגברית, פשוטה להפליא ומפתיעה באותה מידה, הממחישה את יכולתה של המתמטיקה להצביע מיד ... אחד איפה שהוא לאורך החבל ותנו למעגל להתרחב במידה שווה סביב הכדור. בכמה גדל רדיוס המעגל החדש? הציבו את המספרים במשוואת היקף המעגל, וכמה הקלקות על המחשבון שלכם יתנו גודל שכל חתול יעבור מתחתיו בנוחות. רגע, מה קורה פה?! ... - אור. התוספת להיקפה? מטר אחד. עם המסקנה הזאת תוכלו להשלים בכמה דרכים: א) אחרי הצבות של כל מיני מספרים גדולים וקטנים וחישובי התוצאות, ב) אחרי אימוץ החשיבה הויזואלית, ג) אחרי הבנת הקשר האלגברי בין ההיקף לרדיוס. מבט במשוואת ... אלא כי היא חסינה לכמה מהמלכודות האורבות לחשיבה הויזואלית. מה הייתה ההפשטה הבאה במתמטיקה? אם המשוואה האריתמטית פועלת על מספרים והמשוואה האלגברית פועלת על אותיות המייצגות מספרים, המשוואה הדיפרנציאלית פועלת על פונקציות, שהן עצמן מעין משוואות. גם כאן, כפי שנראה בפרק 8. 8, רמת ההפשטה החדשה ...