אינסוף - מבואאינסוף - מבוא אינסוף הוא מושג שזוכה במתמטיקה, בפילוסופיה, בתאולוגיה ובשפת היומיום למשמעויות רבות ושונות. המשותף לרוב המשמעויות הללו הוא תפיסת האינסוף כדבר מה שתכולתו גדולה מכל דבר אחר, תהליך שלא יגיע לסופו לעולם. סימונו ברוב ענפי המתמטיקה הוא \ infty. האינסוף במתמטיקה במתמטיקה, ישנם שני סוגים עיקריים של אינסוף - זה הבא לתאר גודל של קבוצה שאינה סופית - גודל שכזה מכונה עוצמה. השני בא לתאר תהליכים גבוליים, ומשמעותו היא כמה שנרצה - כלומר, שאיפה לאינסוף פירושה שאנו יכולים להגיע למספר גדול כרצוננו. זהו אינסוף שמושתת אך ורק על אלמנטים סופיים, אך מאחוריו עומד תהליך אינסופי. ישנן גם מערכות מספרים שכוללות בהן את האינסוף כמספר, או מרחבים שבהם האינסוף נכלל בתור איבר של המרחב. בכל המקרים הללו הדבר גורר שינוי של כמה מהתכונות המתקיימות במערכת, ולעתים אין האינסוף שהוסף אליהן מהווה יותר מסימון לצורכי נוחות בלבד. האינסוף כתהליך הגדל כרצוננו תכונתם של המספרים הטבעיים, שלכל אחד מהם יש מספר גדול ממנו, הייתה ידועה כבר ליוונים הקדמונים ... כזו שעבור כל מספר טבעי, החל ממקום מסוים יהיו כל איברי הסדרה גדולים ממנו. זוהי דוגמה לתהליך של שאיפה לאינסוף, אף שהאינסוף בו בא לידי ביטוי רק באמצעות מושגים סופיים. הגדרה פורמאלית של תהליך הגדל לאינסוף ניתנה במאה ה - 17, בעת העיסוק במושג הגבול, בתחילת יצירתו של החשבון האינפיניטסימלי. במסגרת דיון זה הנהיג המתמטיקאי האנגלי גון ואליס בשנת 1655 את הסמל \ infty למושג האינסוף. הסמל בא לידי שימוש, למשל, בביטוי מהצורה \ lim_ {n \to \infty} x_n שאותו יש לקרוא הגבול של הסדרה \ x_n כאשר n שואף לאינסוף (ראו הרחבה בעניין זה בערך גבול). האינסוף כגודל מוחשי הפיתוח העשרוני האינסופי של 0.999... השווה גם ל - 1 - אינסוף העיסוק באינסוף כגודל מוחשי בא לידי ביטוי בפרדוקס של גלילאו, המדגים של תכונותיהן הלא אינטואיטיביות של קבוצות שמספר איבריהן אינו סופי ... והוא נחשב למחלקה). לקבוצת כל העוצמות (ולקבוצות השקולות לה), שלא ניתן לטפל בהן במסגרת תורת הקבוצות האקסיומטית, קרא קנטור האינסוף המוחלט. פעולות באינסוף יש כמה דרכים שבהן ניתן לצרף את הסמל \ \ infty למערכות מספרים מוכרות. בכל אחת מדרכים אלה מקבלות פעולות מסוימות משמעות, ובאותה עת מאבדים כמה מן התכונות המקוריות של המערכת. למערכות שונות הכוללות את סמל האינסוף יש שימושים שונים בהקשרים מתמטיים שונים, ולא קיימת דרך מוסכמת, נכונה, לטפל באריתמטיקה של הסמל הזה. דרך אחת לבצע פעולות באינסוף היא לספח לישר הממשי, בתור קבוצה סדורה, שתי נקודות חדשות: \ \ infty ו - \ - \ infty. ... (1+\ infty) - \ infty= \ infty-\ infty=0, או לוותר על האסוציאטיביות של החיבור. ראו גם שדה המספרים הסוריאליסטיים. האינסוף בגאומטריה אחת התוצאות הראשונות הנובעות מהאקסיומות של הגאומטריה היא שכל ישר מכיל אינסוף נקודות. תוצאות נוספות הן שבכל מישור נמצאים אינסוף נקודות שונות ואינסוף ישרים שונים, וכן ישנם אינסוף מישורים שונים. אחת הדרכים בהן נוהגים להתבונן על המישור המרוכב היא כעל כדור, המכונה הספירה של רימן, שמכיל את כל איברי המישור המרוכב בתוספת נקודה אחת, בקוטב הצפוני של הכדור - האינסוף. זוהי דוגמה למצב שבו האינסוף הוא נקודה לכל דבר במרחב, והיא מאפשרת טיפול נוח בפונקציות שמקבלות ערכים אינסופיים. בגאומטריה פרויקטיבית, מוסיפים נקודה שבה נחתכים כל הישרים. זוהי נקודת האינסוף. האינסוף בקוסמולוגיה התגלית לפיה היקום מתפשט העלתה בהכרח את השאלה האם התפשטות היקום היא תהליך שיימשך עד אינסוף או שתהליך זה ייעצר בשלב כלשהו. שאלה זו היא שאלת מפתח בקוסמולוגיה. האינסוף בפיזיקה באלקטרודינמיקה קוונטית ובתורת השדות הקוונטית, שני ענפים של תורת הקוונטים שהיא נושא מרכזי בפיזיקה המודרנית, עלתה בעיה של משוואות המציגות מציאות פיזיקלית ותוצאתן אינסוף. הפיזיקאי ריצרד פיינמן הציע פתרון לבעיה זו, הקרוי רנורמליזציה. האינסוף באמנות הצייר מוריץ קורנליס אשר הרבה לחקור את מושג האינסוף ביצירותיו. רבות מיצירותיו מציגות דמויות ההולכות וקטנות לאינסוף. דוגמה מובהקת לכך היא הציור גבול מעגל 4 - שמים וגיהנום משנת 1960. האינסוף בפילוסופיה בירור ראשוני של המשמעות הפילוסופית של מושג האינסוף מופיע בפרדוקסים של זנון אותם הגה ביוון העתיקה במאה החמישית לפנהס. טיעוניו עוסקים בפרדוקסליות של התנועה ושל הזמן כאשר מחלקים גודל סופי נתון לחלקים רבים והולכים לבלי גבול. פתרון לפרדוקסים אלה נמצא רק בביסוס התאורטי של מושג האינסוף במתמטיקה, החל מהמאה ה - 17. תיאור של האינסוף מופיע בכתביו של אריסטו: תמיד אפשר לחשוב על מספר גדול ...