ידע
להצליח
⭐⭐⭐⭐⭐
הדפסה ללכת לבית ספר ✔לוגיקה - מבוא ✔תורת ההיגיון או בלעז, לוגיקה (מיוונית: ), התורה הבוחנת קשרי היסק בין טענות... - ידע להצליח התחייבות! ל: להצליח...
הצטרף לחברים באתר!
שם
סיסמא
לחץ כאן
להתחבר לאתר!
💖
הספרים שמומלצים לך:
להצליח בחיים
ולהיות מאושר!






🖶 לוגיקה - מבוא
תורת ההיגיון או בלעז, לוגיקה (מיוונית: ), התורה הבוחנת קשרי היסק בין טענות. הלוגיקה מנתחת את הצורה של הטענות, ועל סמך ניתוח זה מציעה כללים שבעזרתם ניתן לקשר טענות זו לזו ובכך להסיק מסקנות. הלוגיקה מבחינה בין טיעונים שיש בהם היסק תקף, כלומר כאלו שבהם המעבר מההנחות למסקנה הוא מוצדק, לטיעונים שאינם תקפים. לפיכך הלוגיקה היא בראש ובראשונה התורה המתארת את אופני החשיבה התקפים ואת אופני ביטויהם.

במאה ה - 19 וה - 20 חווה ענף הלוגיקה התפתחות משמעותית עקב התמקדות המחקר באופן בו ניתן לזקק מבנה לוגי באמצעות שפות מלאכותיות המושתתות על אופני ביטוי סימבוליים, ללא תלות בתחביר של השפה הטבעית. כך נולדה הלוגיקה המתמטית, המתמקדת במושג ההוכחה ובתכונותיהן של מערכות אקסיומטיות שונות. לפיכך בעוד שבראשית הלוגיקה נושא המחקר היה חוקי החשיבה הנכונה, נכון יותר לתאר את העניין של הלוגיקה המודרנית כעיסוק בתכונותיהן הצורניות של קבוצות של טענות באשר הן.

מקורו של המונח לוגיקה מהמילה היוונית לוגוס, שלה פירושים שונים כגון 'סיבה', 'מחשבה', ו'טיעון'. התרגום העברי המסורתי ל'לוגיקה' הוא 'תורת ההיגיון' או 'שכל הישר'.

תולדות הלוגיקה

מראשיתה ועד תקופת אפלטון

ראשיתה של הלוגיקה במחקר הפילוסופי אודות תכונותיהם של טיעונים. מחקר זה התפתח במיוחד ביוון העתיקה, ובעיקר במסגרת האסכולה האלאטית. פרמנידס ותלמידו זנון התמחו בניסוחם של טיעונים פרדוקסליים, המראים כי ישנן סתירות במושגים באמצעותם אנו מבינים את המציאות, במיוחד בכל הנוגע למושגים רצף ואינסוף. את הסתירות הללו ניתן לחשוף באמצעות הצגת הקשרים בין המושגים השונים שלנו בצורה של טיעון, שעל אף שאנו נטוים לקבל את הנחותיו, מסקנתו בלתי נסבלת (למשל, שאין שינוי בעולם, שאין בו תנועה וכו'). הסיבה לכך שסתירות אלו עולות היא שהבנתנו הראשונית את המושגים הנוגעים לעולם החושים אינה מתוחכמת מספיק, בעקבות הסתירות, אנו נאלצים לחשוב מחדש על האופן בו עלינו להבין אותם.

אפלטון יכול להחשב כממשיך דרכם של האלאטים. אפלטון אמנם לא הציג תורה לוגית סדורה, אולם בדיאלוגים שכתב הוא חקר מספר מושגים לוגיים יסודיים, למשל את ההבחנה בין טיעונים שבמבנה שלהם קיימת סתירה פנימית, לבין טיעונים שהתוכן שלהם עקבי, כלומר שאין בו סתירות פנימיות. לשם כך ביקש אפלטון להבהיר את מושג ההגדרה (יוונית: Horismos), שכן ללא הגדרות חדות של המושגים אודותם נסובים טיעונינו, קשה להבחין מתי אנו סותרים את עצמנו. בדיאלוג האפלטוני הטיפוסי, סוקרטס בוחן נושא מסוים (למשל, מהו אומץ או מהי ידידות) ושואל את שאר המשתתפים בדיאלוג שאלות כדי לבדוק עד כמה הם עקביים בדיעותיהם על נושא זה. לעתים ניתן לחלץ מן הדיאלוג מערכת של משפטים, המרכיבים יחדיו טיעון, ולנתח את הדיאלוג כחקירה המכוונת לבדוק האם כל המשפטים עקביים עם עצמם ועם המשפטים האחרים בהם מאמינים המשתתפים בדיאלוג. למתודה זו של בירור לוגי קרא אפלטון דיאלקטיקה.

עיקרון לוגי יסודי שאפלטון זיהה לראשונה הוא חוק הסתירה, על פיו אין דבר יכול לשאת תכונות מנוגדות זו לזו:

"ברור שאותו הדבר עצמו לא יעשה או יסבול בעת ובעונה אחת דבר והיפוכו, על כל פנים לא מאותה בחינה עצמה ולגבי אותו העניין עצמו, ולפיכך, אם נמצא שכך יארע בהללו, נדע שאינם אותו הדבר עצמו, אלא מרובים" (פוליטיאה, 436ב).

לוגיקה אריסטוטלית

הלוגיקה של אריסטו

גישתו של אריסטו ללוגיקה הייתה שיטתית יותר מזו של אפלטון, והוא הפך אותה לתורה סדורה המאפשרת להבחין בין טיעונים מבוססים לטיעונים שאינם מבוססים על סמך זיהויה של הצורה הלוגית של הטיעונים. טיעון הוא תקף כאשר ההנחות מספיקות לשם תמיכה במסקנה, כך שלא ייתכן שההנחות אמיתיות אבל המסקנה שקרית. ההכרח הלוגי של הטיעונים התקפים נובע מכך שלטענות ישנו מבנה פנימי, למשל, שבכל טענה ישנו נושא ונשוא, ושכל טענה היא כללית או פרטנית, וישנו מספר מוגבל של צורות שבהן ניתן לקשר טענות זו לזו (למשל, טיעונים שבהם שתי ההנחות פרטניות, והמסקנה כללית, או כאלו שבהם אחת ההנחות כללית, השנייה פרטית, והמסקנה כללית, וכו'). מבין הצורות האפשריות של טיעונים בני שתי הנחות ומסקנה אחת, גילה אריסטו את הצורות של הטיעון התקף או המופתי, המוביל תמיד מהנחה אמיתית למסקנה אמיתית. אריסטו טען שבאמצעות צורות אלו משמשת הלוגיקה ככלי עבור המדע וכאמצעי להתקדמות הידע. קיים היום ויכוח האם, לפי אריסטו, הלוגיקה היא חלק ממשי מהפילוסופיה (כמו, למשל, האתיקה) או רק כלי עבודה (אורגנון) של הפילוסופים.

מושגי היסוד בלוגיקה האריסטוטלית הם: מונח, טענה, טיעון, נביעה או היסק, וכלל המרה. כמו כן ניתן להחיל בקלות על הלוגיקה האריסטוטלית את המונחים המודרניים של תקפות נאותות, וכלל היסק. תפקיד הלוגיקה הוא להבחין בטיעונים בעלי צורות תקפות, כלומר כאלו שבהם מהנחות אמיתיות נובעת מסקנה אמיתית. טיעונים שאינם עומדים בקריטריונים האלו, אינם טיעונים תקפים. ישנם כללי המרה המאפשרים להראות כי טענות שונות בצורתן הן למעשה שקולות זו לזו (ר' להלן) וכך להרחיב את מספר צורות הטיעון התקפות.

להלן נבחן תחילה את הרעיון שלטיעון יש צורה לוגית, לאחר מכן נדון בעקרונות היסוד של הלוגיקה אצל אריסטו, ולבסוף נדון במגבלותיה של הלוגיקה האריסטוטלית.

צורתו הלוגית של הטיעון

טיעון הוא קבוצה של משפטים (או קבוצה של טענות) שחלקם הנחות ואחד מהם הוא המסקנה, והקבוצה נחשבת טיעון כאשר המעבר בין ההנחות למסקנה הוא תקף, כלומר כאשר המסקנה נובעת בהכרח מן ההנחות. מהי נביעה הכרחית? כאשר ניתן לומר שאין מצב עניינים שבו ההנחות אמיתיות אבל המסקנה שקרית, כלומר כאשר אין דוגמה נגדית. באמצעות הניתוח של מבנן הבסיסי של טענות, אריסטו זיהה כי לטיעונים בעלי שתי הנחות ומסקנה ישנו מספר סופי של צורות, וחלק מהן הן כאלו שמשמרות את האמת של ההנחות וכך מבססות את אמיתותה של המסקנה. לטיעונים כאלו קרא אריסטו סילוגיזם.

נוכל להבין את הרעיון של הצורה הלוגית של טיעון תקף אם נחשוב על ההבדל בין תקפות ואמיתות. לדוגמה: נתונות שתי הנחות:

1.כל היוונים הם בני אדם.

2.כל בני האדם הם בני תמותה.

מסקנה: כל היוונים הם בני תמותה.

התקפות של טיעון זה כמעט ברורה מאליה. ברור גם שאם שתי ההנחות אמיתיות, גם המסקנה, בהכרח, אמיתית. אין באפשרותנו להעלות על דעתנו מצב שבו ההנחות אמיתיות והמסקנה אינה אמיתית. אבל מה אם אחת ההנחות שקרית? או אז הטיעון עודנו תקף, אף שבמקרה כזה ייתכן שהמסקנה שקרית. אריסטו סבור כי הטיעון תקף בזכות צורתו, ללא קשר לשאלה האם חלק מהטענות שקריות מבחינת התכן שלהן. ההבחנה בין טיעון תקף שבו ההנחות אמיתיות לטיעון תקף שבו ההנחות אינן אמיתיות היא ההבחנה בין נאותות (soundness) לאי - נאותות של הטיעון, אבל היא אינה משפיעה על תקפות הטיעון עצמה. צורתו הכללית של הטיעון הזה היא כזו:

1.כל א הוא ב

2.כל ב הוא ג

מסקנה: כל א הוא ג

יש לשים לכמה פרטים חשובים בנוגע לניתוח הצורני של מבנה הטיעון, על פי אריסטו. ראשית, ישנם בטיעון שלושה מונחים כוללים אשר כל טענה מקשרת בין שניים מהם. בטיעון תקף ישנו מונח מסוים (ב') אשר מופיע בהנחה הראשונה ומופיע שנית בהנחה השנייה, והוא המתווך בין שני המונחים (א' ו - ג'), אשר מופיעים כל אחד בהנחה אחת בלבד. במסקנה, המונח המתווך (ב') אינו מופיע כלל, ומה שהמסקנה מלמדת אותנו זה על הקשר שבין השניים האחרים (א' וג'). אריסטו הוא שהמציא את מתודת ההפשטה המאפשרת להציג מונחים באמצעות אותיות, וזהו צעד חשוב בדרך להמצאתו של המשתנה. כמו כן, יש לשים לב לכך שמלבד המונחים, המיוצגים באמצעות אותיות, מופיעים בגרסה הצורנית של הסילוגיזם קבועים לוגים, דהיינו מלים כגון "כל", "הוא" (האוגד), וכן מלים נוספות שעוד לא פגשנו בטיעון שלעיל, כגון "חלק מ" והשלילה באמצעות "אינו". כאשר אנו מצרינים את הטיעון אנו נפטרים אך ורק מן השמות של המונחים, ואילו הצורה הלוגית של הטיעון, המיוצגת באמצעות הקבועים הלוגים, נשארת חשופה לעינינו.

מתפיסה זו של הצורה התקפה של הטיעון יוצא שאם בטיעון מסוים ההנחות אמיתיות והמסקנה שקרית אזי הטיעון אינו תקף. למשל בטיעון - לכאורה, שדומה לקודם:

1.כל בני האדם הם בני תמותה.

2.כל היוונים הם בני תמותה.

מסקנה - לכאורה: כל היוונים הם בני אדם.

נניח ששתי ההנחות אמיתיות. עדיין ייתכן שהמסקנה אינה נכונה, למשל אם אנו מוכנים להחשיב את סוסיהם של היוונים כיוונים. מכאן שבטיעון - לכאורה שבחנו ישנה בעיה - אין יחס של נביעה בין ההנחות והמסקנה. צורת הטיעון בה אנו מתבוננים איננה תקפה, וכל טיעון בעל אותה צורה יהיה טיעון בלתי תקף:

1.כל א הוא ב.

2.כל ג הוא ב.

מסקנה - לכאורה: כל ג הוא א.

כל טיעון בעל צורה כזו אינו תקף, והוא יכונה כשל לוגי.

עד עכשיו בחנו טיעונים שבהם כל הטענות הן טענות כלליות. אולם ישנם גם טיעונים תקפים המקשרים טענות פרטניות, כלומר כאלו שבחלק מהטענות המקושרות בהם הקבוע הלוגי אינו "כל" אלא "חלק מ". למשל:

1.כל הפירות צומחים על עצים.

2.חלק מהפירות הם הדרים.

מסקנה: חלק מהצומחים על העצים הם הדרים.

והנה צורת הטיעון:

1.כל א הוא ב

2.חלק מ - א הם ג

מסקנה: חלק מ - ב הם ג

אריסטו הבחין גם בשלילה כאחד מן הקבועים הלוגים, וכך הבחין בין צורתן של טענות חיוביות ושל טענות שוללות. באמצעות כך הוא זיהה צורות נוספות של טיעונים תקפים, למשל:

1.כל הנמרים הם יונקים.

2.אף דג אינו יונק.

מסקנה: אף דג אינו נמר.

והנה צורת הטיעון:

1.כל א הוא ב.

2.אף ג אינו ב.

מסקנה: אף ג אינו א.

לאחר שבחן את מגוון הצירופים האפשריים של טענות (כלומר צירופים שבהם סדר המונחים זהה, או צירופים שבהם השילוב בין טענות כוללות ופרטניות, או בין טענות שוללות וחיוביות, דומה), הצליח אריסטו לצמצם את מספר הטיעונים התקפים היסודיים לארבעה, על ידי שימוש בשלושה כללי המרה שבאמצעותם ניתן להמיר טענות מסוג אחד בטענות מסוג אחר. אלו הם שלושת כללי ההמרה:

1.מ"אין א שהוא ב" הסק: "אין ב שהוא א"

2.מ"כל ב הוא א" הסק: "חלק מ - א הוא ב"

3.מ"חלק מ - ב הוא א" הסק: "חלק מ - א הוא ב"

הערה נוספת: הניתוח של אריסטו מאפשר מתייחס לטענות שבהן מקושרים שני מונחים כוללים, שמות של קבוצות. למעשה, הלוגיקה האריסטוטלית מועילה במיוחד לדון ביחסים בין מינים וסוגים (אריסטו החשיב את המחקר הטקסונומי בביולוגיה כצורה המופתית של המדע, ואת הסילוגיזם ככלי העבודה העיקרי של המדען). אולם הניתוח האריסטוטלי מאפשר להתייחס גם לשמות פרטיים כלו היו מונחים כוללים, וכך להציג את הטיעון התקף הבא:

1.כל בני האדם הם בני תמותה

2.סוקרטס הוא אדם

מסקנה: סוקרטס הוא בן תמותה

עקרונות היסוד הלוגיים אצל אריסטו

ניתן לזהות שני עקרונות לוגיים יסודיים המדריכים את אריסטו:

1) חוק אי - הסתירה - לחוק זה היבט אונטולוגי, היבט לוגי, והיבט פסיכולוגי. מן ההיבט האונטולוגי, דבר לא יכול, באותו זמן, מקום ונסיבות, לשאת תכונה מסוימת ולא לשאת את אותה תכונה בעת ובעונה אחת, מן ההיבט הלוגי או הסמנטי, טענה אינה יכולה להיות גם אמיתית וגם שקרית, ומן ההיבט הפסיכולוגי, לא ניתן לחשוב מחשבה ואת המחשבה המנוגדת לה בעת ובעונה אחת. העיקרון מופיע בספר המטפיזיקה של אריסטו כך (ע' בקר 1005b):

"לא אפשרי לאותה תכונה להשתייך ולא להשתייך לאותו דבר בו זמנית ובאותו יחס... אף אחד אינו יכול להניח כי אותו דבר הינו ואינו... ואם לא אפשרי לתכונות סותרות להשתייך בו זמנית לאותו עצם... ואם דעה הסותרת דעה אחרת מנוגדת לה, ברור כי אין זה אפשרי... להניח שדבר מסוים הינו ואינו בו זמנית וביחס לאותו עצם... ומכאן שכל אדם המדגים דבר כלשהו, מתייחס לעקרון זה כהנחה הראשונית, משום שזוהי מטבע הדברים נקודת המוצא לכל שאר האקסיומות"

2) חוק השלישי הנמנע - לפיו טענה יכולה להיות או אמיתית או שקרית, ואין שום אפשרות ביניים שלישית. מכאן, שהלוגיקה בוחנת טענות אך ורק אם יש להן אחת משני ערכי אמת: אמת ושקר. טענות שאינן כאלו אינן מעניינה של הלוגיקה, ובאשר לטענות שהלוגיקה כן עוסקת בהן, אין אופציה נוספת. לא תיתכן טענה שאינה אמת ואינה שקר, ולכן ביטוי כגון "או שדני אוהב ללכת לבית הספר או שדני לא אוהב ללכת לבית הספר" יחשב כנכון בהכרח, משום שאחד החלקים של המשפט חייב להתקיים.

חוק אי - הסתירה מאפשר להראות את שקריותה של טענה כאשר ניתן להסיק ממנה דבר והיפוכו, מכאן שבצירוף לחוק השלישי הנמנע, ניתן להראות את אמיתותה של טענה על ידי הוכחת שקריותה של שלילתה. הוכחה מסוג זה מכונה בלטינית רדוקציו אד אבסורדום (reductio ad absurdum) או הוכחה בדרך השלילה. מכיוון שבהוכחה כזו ההנחה (שלילתה של טענה מסוימת) מובילה לסתירה, ברור שההנחה אינה יכולה להיות אמיתית. ומכאן שהטענה המקורית (אותה שללנו כהנחה להוכחה על דרך השלילה) אמיתית.

כללים אלו הינם ברורים מאליהם אך יש מקרים בהם הרלוונטיות שלהם אינה ברורה. לדוגמה, ישנם משפטים וטענות שאנו משתמשים בהם בחיי היומיום שאין להם בהכרח תשובה מוחלטת של "אמת" או "שקר". ניקח לדוגמה את השאלה מתי הופכת קבוצה של חפצים לערימה. למשל, כמה גרגרי חול דרושים על מנת להפוך לערימה? האם יש מספר מסוים של גרגרים שמעבר לו מדובר בערימה? או ששאלה זו אינה ניתנת למענה חד משמעי, והטענה כי קבוצה של גרגרי חול היא ערימה אינה כפופה לחוק השלישי הנמנע? הלוגיקה הקלאסית נמנעת מלעסוק בטענות מסוג זה, שכן היא מקבלת את החוקים הללו כהנחות יסוד. במאה העשרים התפתח ענף בלוגיקה המכונה אינטואיציוניזם, ובו דוחים את עקרון השלישי הנמנע. בענף אחר וחדש יחסית של הלוגיקה, לוגיקה עמומה (Fuzzy logic), עוסקים בטענות שאינן אמיתיות או שקריות באופן חד - משמעי.

מגבלות הלוגיקה האריסטוטלית

מנקודת המבט של הלוגיקה המודרנית, ללוגיקה של אריסטו מגבלות רבות, והיא אינה מצליחה להביע את שלל היחסים הלוגיים המופיעים בטענות המשמשים אותנו לשם הסקת מסקנות.

בין השאר, אריסטו הכיר אך ורק במבנה של טענות שיש בהן נושא ונשוא (א הוא ב), ולא הכיר בטענות שצורתן צורת התנאי (אם א אז ב). הוא אף סבר שבטיעון תקף חייבת להיות יותר מהנחה אחת, ושהמסקנה חייבת להיות שונה מההנחות. ואולם הגדרתו לטיעון תקף אינה נותנת לנו סיבה לפסול את תקפותו של הטיעון הבא:

הנחה: המלך הוא עירום. מסקנה: המלך הוא עירום.

אין מצב שבו ההנחה אמיתית ואילו המסקנה שקרית, ועל כן הטיעון תקף (אם כי הוא טיעון שאין בו כל עניין).

אחד ההבדלים הברורים בין הלוגיקה האריסטוטלית לבין הלוגיקה החדשה נוגע להנחת הקיום, אשר מתפקדת אצל אריסטו כך שכל מונח, אשר יכול להופיע בטענה, נחשב כאילו אינו ריק, כלומר כאילו קיימים ישים מסוימים השייכים לו. למשל, כאשר הטענה היא "כל בני האדם הם בני תמותה", ניתן על פי הלוגיקה האריסטוטלית להסיק "ישנו בן אדם". בחוק ההמרה השני של אריסטו (ר' לעיל) ישנה הרשאה מפורשת למעבר מן הטענה "כל ב הם א" לטענה "יש א שהוא ב". לעומת זאת, בלוגיקה החדשה, השימוש בכמת האוניברסלי אינו מבטיח שהפרדיקט אשר מצוי בטווח שלו אינו מציין קבוצה ריקה.

אריסטו גם אינו מכיר באופיים הייחודי של יחסים, דהיינו של פרדיקטים המקשרים שני אובייקטים. לפיכך, לא ניתן להביע באמצעות הלוגיקה האריסטוטלית את הקשרים הלוגיים שבין הטענות הבאות:

1.יוני הוא אביו של רוני

2.רוני הוא אביו של בוני

3.יוני הוא אביו של אביו של בוני

לו היינו מנסים להביע את הטענות הללו באמצעים אריסטוטליים, היינו מקבלים את הצורה הלא - תקפה הבאה:

1.א הוא ב

2.ב הוא ג

3.א הוא ד

בעוד שאופן הניתוח של המבנה היסודי של הטענה אצל אריסטו אינה נדחית לגמרי בצורתו הפשוטה של תחשיב הפסוקים המודרני, הרי שהלוגיקה המודרנית, מאז פרגה, מציעה ניתוחים מתוחכמים בהרבה של המבנה הפנימי של הטענה באמצעות תחשיב הפרדיקטים. בעוד שאריסטו סבר כי לטענות יש שלושה חלקים: שני מונחים והאוגד המחבר ביניהם, בתחשיב הפרדיקטים של הלוגיקה החדשה הטענה האטומית היא בעלת שני חלקים בלבד: האובייקט והפרדיקט המושת עליו. בנוסף, הלוגיקה החדשה אינה תופסת את הכמת הלוגי כמאפיין את הטענה כולה או את האוגד, אלא כחל על משתנה מסוים מתוך הטענה. באמצעות כך שהכמתים יכולים כעת להופיע כחלק מן המבנה הפנימי של הטענה, ובאמצעות כך שניתן כעת לנסח טענות שיש בהם כימות מרובה של מספר משתנים בעת ובעונה אחת, מאפשרת הלוגיקה החדשה להביע עובדות וקשרים שאינם ניתנים להבעה באמצעות הניתוח האריסטוטלי. כך למשל הצליחה הלוגיקה המודרנית לתת לראשונה תיאור מדויק של מושג הגבול באנליזה המתימטית של פונקציות, שכן לשם הבעת מושג זה יש צורך בטענה מרובת כמתים מן הצורה "לכל קיים כך ש...".

הלוגיקה לאחר אריסטו ועד המאה התשע עשרה

במשך כאלפיים שנה נחשבה הלוגיקה האריסטוטלית כמשהו שאין כל צורך לפתחו או לשנותו, אף שנעשו מעט תוספות מינוריות למטרות דידקטיות. ואולם, כבר בסוף המאה השמונה עשרה, אצל קאנט, ניכרת חוסר נוחות הולכת וגוברת באשר ליכולתה של הלוגיקה האריסטוטלית לתאר את כל אופני המחשבה התקפים. קאנט ביקר את הלוגיקאים הסכולסטים על כך שצורת הטענה היחידה בה הם מטפלים היא טענה של נושא - נשוא (א הוא ב). קאנט הציע להחשיב גם את הצורות של משפט התנאי (אם א אז ב) ושל המשפט הדיסיונקטיבי (א או ב) כצורות יסודיות של טענות.

החל במאה התשע עשרה, התפתחות הלוגיקה הייתה תלויה במידה רבה בעניין שגילו בה מתמטיקאים, אשר ביקשו להבין את אופין של טענות מתימטיות (למשל משוואות, שצורתן אינה כזו של נושא - נשוא) ואת אופיו של הטיעון המתימטי, דהיינו ההוכחה. במקביל לחקירת המאפיינים הלוגים של המתמטיקה, הוחל לעשות שימוש במתודות מתמטיות בלוגיקה, וההפריה ההדדית בין שני המדעים גברה. מתמטיקאים ופילוסופים כמו ג'ורג' בול, אוגוסטוס דה מורגן, ויליאם סטנלי ג'בונס, צ'ארלס פירס, וארנסט שרדר, הניחו במחקריהם את היסודות ללוגיקה המודרנית. עבודתם של בול וממשיכיו עומדת ביסוד תחשיב הפסוקים המודרני, וגישתם האלגברית ללוגיקה עומדת ביסוד מדעי המחשב. בול וממשיכיו הציגו לראשונה מונחי יסוד של תורת הקבוצות במסגרת הדיון בלוגיקה, ובאמצעותם ייצגו הסקים אריסטוטלים כמשוואות שהמסקנה היא פתרונן. במקביל, מתמטיקאים ופילוסופים כמו ברנרד בולצאנו ואלקסיוס מיינונג חקרו את מושג הטענה ואת האופן בו תפיסותינו של האובייקטיביות של הלוגיקה והמתמטיקה מחייבות אותנו לקיומן האידאלי של טענות. התפתחויות אלו עומדות בבסיס עבודתו של גוטלוב פרגה, שאף שעיקר הישגיו בלוגיקה הושגו במאה התשע - עשרה, הם לא נודעו כמעט עד תחילת המאה העשרים.

הלוגיקה של פרגה

גוטלוב פרגה נחשב כלוגיקן הגדול ביותר מאז אריסטו. עבודתו לא הוכרה כמעט בזמנו, ורעיונותיו קיבלו תהודה בעיקר דרך אלה שהשפיע עליהם, כגון ג'וזפה פאנו, ברטראנד ראסל ולודוויג ויטגנשטיין.

חידושיו של פרגה

"כתב מושגים", ספרו הראשון והמהפכני של פרגה מ - 1879, סימן את תחילתה של תקופה חדשה בהיסטוריה של הלוגיקה. בספר זה הציע פרגה לראשונה אקסיומטיזציה של תחשיב הפסוקים ושל תחשיב פרדיקטים, המנתח את מבנה הטענה כבעלת שני חלקים בלבד. בעוד שאריסטו סבר כי לטענות יש שלושה חלקים: שני מונחים והאוגד המחבר ביניהם ("א' הוא ב'", או "כל א' הוא ב'"), בתחשיב הפרדיקטים של הלוגיקה החדשה הטענה האטומית היא בעלת שני חלקים בלבד, פרדיקט ואובייקט, החוברים זה לזה כפי שפונקציה חלה על משתנים. שיטת התיווי הלוגי של פרגה לא התקבלה, גם כאשר רעיונותיו נתקבלו במסורת. למשל, את המשפט "דני הוא חכם", ניתן להצרין בעקבות פרגה כך:

Fa

כאשר F מציין את הפרדיקט חכם, ו - a מציין את שמו של האובייקט, דני. שיטתו של פרגה מאפשרת גם להביע יחסים בין שני אובייקטים או יותר באמצעות פרדיקטים דו מקומיים, המקבלים שני אובייקטים. למשל כדי לומר שדני (a) הוא חבר של רני (b), תוך ציון יחס החברות באמצעות האות R, נקבל את הנוסחה הבאה:

Rab

פרגה תרם תרומה הכרחית למתמטיקה וללוגיקה באמצעות המצאת תורת הכימות (קוונטיפיקציה). הלוגיקה החדשה אינה תופסת את הכמת הלוגי כאפיון של הטענה כולה או של האוגד שלה, אלא כפונקציה מסדר גבוה יותר החלה על הפרדיקט ועל המשתנה שלו. למשל, כך מביע פרגה את צורתה של הטענה "כל דבר הוא חכם":

וכך מסמנים פסוק זה בשיטה המודרנית \ \ forall x Fx

וכך הוא מביע את הטענה "יש דבר אחד לפחות שהוא חכם":

וכך מסמנים פסוק זה בשיטה המודרנית \ neg \forall x \neg Fx השקולה ל - \ exists x Fx

באמצעות התחביר החדש של תחשיב הפרדיקטים, הכולל הכימות, יכולים הכמתים להופיע כחלק מן המבנה הפנימי של הטענה, ובאמצעות כך ניתן כעת לנסח טענות שיש בהם כימות מרובה של מספר משתנים בעת ובעונה אחת. טכניקות אלו מעניקות ללוגיקה החדשה כוח להביע עובדות וקשרים שאינם ניתנים להבעה באמצעים האריסטוטלים. למשל הצליחה הלוגיקה המודרנית לתת לראשונה תיאור פורמאלי של מושג האינסוף, שהוביל מאז ימי האסכולה האלאטית לפרדוקסים, ושל מושג הגבול באנליזה המתימטית של פונקציות, שכן לשם הבעת מושגים אלו יש צורך בטענה מרובת כמתים מן הצורה "לכל קיים כך ש...". דוגמה פשוטה יחסית לאופן בא נעשה שימוש כזה בכמתים היא ההצרנה של הטענה "לכל אחד יש חבר", כאשר נציין את היחס בין חברים שוב כפרדיקט דו - מקומי, F:

\ \ forall x \exists y Rxy

הפילוסופיה של הלוגיקה של פרגה

בפילוסופיה של הלוגיקה, פרגה מציג את שלושת העקרונות היסודיים שלו בהקדמה לספרו השני, "יסודות האריתמטיקה". העקרון הראשון מציג את התנגדותו של פרגה לפסיכולוגיזם, דהיינו לעירוב של שיקולים פסיכולוגיים בניתוח הרעיונות הלוגיים היסודיים. הוא סבר כי חוקי הלוגיקה אינם רק חוקי המחשבה, אלא חוקי האמת, ושיש לתכנים לוגיים קיום אובייקטיבי, ולא סובייקטיבי ותלוי במבנה האמפירי של המוח האנושי. מבחינה זו, פרגה היה ריאליסט בנוגע לישויות אידאליות, כולל הישויות המתמטיות הבסיסיות ביותר - המספרים. העקרון השני מציג את עקרון הקונטקסט (הרלוונטי גם בפילוסופיה של הלשון) - לפיו מילה מקבלת את משמעותה רק בקונטקסט של השיפוט שהיא משמשת כחלק ממנו. העקרון השלישי מציג את ההבחנה בין מושג לבין מושא. על פי פרגה, מושגים הם פונקציות, המקבלות את משמעותם רק כאשר ניתן להן אובייקט כערך שלהן. כשלעצמו, המושג הוא בלתי רווי (unsaturated), ורק כשהוא מתחבר לשם או לשם של משתנה, הוא מקבל משמעות. כך פותר פרגה את בעיית אחדות הטענה שהטרידה אחר כך את ראסל, ומציע, באופן מובלע, תורת טיפוסים פרימיטיבית: מושגים (מסדר ראשון) חלים על אובייקטים בלבד, משום שרק באמצעותם הם נהיים רוויים במשמעות. אולם מכאן עולות גם כמה מסקנות פרדוקסליות. מכיוון שרק בצירוף לשם או למשתנה יש למושג משמעות, המושג אינו יכול להופיע כנושא במשפט. מכאן יוצא, כי אין אפשרות לומר "המושג סוס הוא מושג", משום שכאן המושג סוס מופיע כאובייקט, ולא כמושג. פרגה נאלץ לפיכך לטעון: "המושג סוס אינו מושג", ומכאן נובע (אם כי פרגה אינו אומר זאת מפורשות): "המושג מושג אינו מושג". הטענה הפרדוקסלית חושפת כיצד שלושת העקרונות של פרגה קשורים זה לזה. לאור עקרון הקונטקסט, פרגה אינו מוכן לקבל שלפרדיקט יש משמעות במנותק מן המסגרת הטענתית בה הוא מופיע, ובה הוא רווי בזכות קישורו לאובייקט. לאור התנגדותו לפסיכולוגיזם, פרגה שולל את ההתייחסות אל המושג כאובייקט וסבור שהתייחסות כזו נובעת מתפיסת המושג כתוכן מנטלי אינרטי, ולא כפונקציה. עם זאת יש לפרגה דרכים לטפל במושגים במסגרת לוגיקה מסדר שני. דרך אחת היא על ידי ציון האקסטנציה של המושגים (ranges of values או Wertverlufe), דהיינו הקבוצה של האובייקטים שעבורם המושג מעניק ערך אמיתי. קבוצה זו נתפשת כמושא, והיא יכולה להופיע, למשל, בטענות שוויון מספרי. טענות כגון אלו, המכריזות על שוויון מספרי בין האקסטנציות של מושגים שונים הן מהותיות עבור ההגדרה הלוגית של מושג המספר שפרגה הוא מקורה.

פרגה היה התומך המשמעותי הראשון של לוגיציזם - העמדה לפיה ניתן לצמצם את המתמטיקה כולה ללוגיקה. פרגה אף ניסה להוכיח כי חוקי האריתמטיקה, ומושג המספר עצמו, ניתנים לפיתוח מתוך אקסיומות שאותן תפס פרגה כלוגיות במובהק. לאחר שפורסם הכרך הראשון של ספרו השלישי, "חוקי היסוד של האריתמטיקה", ברטראנד ראסל גילה את הפרדוקס של ראסל, והצליח להראות שהאקסיומות של פרגה, ובמיוחד אקסיומה מספר חמש, מובילות אליו (מן האקסיומה החמישית נובע כי עבור כל מושג, יש אובייקט המהווה את האקסטנציה של מושג). הוא כתב על כך לפרגה, שהוסיף נספח לכרך השני של הספר בו הוא מודה כי אין לו פתרון מספק לבעיה, והוא לא הצליח לתקן את עבודתו על מנת למנוע את הפרדוקס. בפרסומים מאוחרים יותר של ראסל ושל ג'ון פון נוימן מוצע פתרון לבעיה באמצעות תורת הטיפוסים (theory of types).

לוגיקה בת ימינו

באמצעות פיתוחם של אמצעים סימבולים חדשים להבעת היחסים הלוגיים בין חלקי הטענה, ובאמצעות גילוין של דרכים חדשות להבין את מבנה העומק של הטענות, הפכה הלוגיקה המודרנית לכלי רב עוצמה באמצעותו ניתן לבחון טיעונים מורכבים יותר מאלו שהלוגיקה האריסטוטלית עסקה בהם, לתת ניתוחים יסודיים של טענות מתמטיות מורכבות, ולזהות תכונות צורניות לא רק של הטענה ושל הטיעון, אלא גם של מערכות לוגיות שלמות, תכונות כגון שלמות, נאותות, כריעות וקומפקטיות, שהן תכונות הנוגעות לאפשרויות ההבעה הגלומות בשפה מסוימת או במערכת אקסיומטית מסוימת, ולא תכונות של טענה או של קבוצה מסוימת של טענות. הלוגיקה המודרנית סיפקה, באמצעים אלו, את היסודות למדעי המחשב ואפשרה את פיתוחם של המחשבים המודרניים.

בעקבות פרגה, פרח המחקר הלוגי במאה העשרים בעבודתם של ברטראנד ראסל, לודוויג ויטגנשטיין, אלפרד טרסקי, קורט גדל, אלן טיורינג, ואחרים. במרבית המקרים הייתה עבודתם רלוונטית הן לפילוסופים והן למתמטיקאים, שכן היא עסקה ביסודות המשותפים לכל שפה ולכל מערכת לוגית באשר היא. למעשה, התנועה המובילה בלוגיקה בתחילת המאה העשרים, הלוגיציזם, ביקשה להראות כי המתמטיקה מבוססת על הלוגיקה. ראסל, למשל, סבר כי בעיות היסוד של המתמטיקה אינן מעניינו של המתמטיקאי, אלא של הפילוסוף והלוגיקאי.

הלוגיקה המודרנית היא לוגיקה סימבולית, דהיינו היא בוחנת צורות מופשטות המיוצגות באמצעות סמלים, שניתן להבין אותן כמייצגות את הצורות של הטענות וההיסקים שאנו מכירים מן השימוש הטבעי בשפה. בלוגיקה מנסחים ובוחנים מערכות לוגיות בשפה הסימבולית. מערכת לוגית היא תחשיב (calculus) בו ניתן לבצע הוכחות. שני התחשיבים הלוגיים הבסיסיים הם תחשיב הפסוקים (propositional calculus או sentential calculus) ותחשיב הפרדיקטים (predicate calculus). תחשיב הפסוקים הוא הרחבה פשוטה למדי של הלוגיקה הקלאסית, ואילו תחשיב הפרדיקטים בוחן את המבנה הפנימי של הטענות ומאפשר שימוש בכמתים, ובכך מעניק ללוגיקה כוח ביטוי שאינו בר השוואה לזה של הלוגיקה האריסטוטלית. התחשיב הוא מערכת פורמאלית שיש בה נוסחאות בנויות כהלכה (נב"כ) מבחינה תחבירית, שחלקן מקבלות מעמד מיוחד של אקסיומות, וכן מערך של כללי היסק הקובעים אילו נוסחאות ניתן לגזור מאילו, ובכך להוכיח אותן. התחביר של התחשיב מגדיר באופן רקורסיבי את כל הנב"כים של התחשיב.

בלוגיקה המודרנית, נהוג להבחין בין התחביר (syntax) של המערכת, הקובע מהו משפט תקני ומהם הכללים לגזירה של משפט אחד ממשנהו, ובין הסמנטיקה (semantics) שלה, הקובעת את ערכי האמת של המשפטים שניתן ליצור באמצעות השפה של המערכת. אם מדובר בשפה כמו תחשיב הפסוקים, הסמנטיקה מספקת ערך אמת לכל אחד מן הפסוקים היסודיים, והיא מספקת פירוש סמנטי לפעולתם של כל אחד מן הקשרים הלוגיים, למשל באמצעות טבלת אמת המציגה כיצד משפט מורכב מקבל את ערך האמת שלו על בסיס ערכי האמת של המשפטים שהוא מחבר זה לזה (ר' להלן). בשפות לוגיות מורכבות יותר, דוגמת תחשיב הפרדיקטים, הסמנטיקה קובעת מהי קבוצת האיברים של תחום הדיון, מהן הקבוצות של האובייקטים המשויכים לכל פרדיקט (דהיינו, לאילו אובייקטים יש את התכונה שהפרדיקט מייצג), וכן את הפירוש של הקשרים הלוגיים. כל פירוש סמנטי של מערכת כזו הוא מודל, אולם התכונות הלוגיות של המערכת עצמה צריכות להיות תקפות עבור כל מודל אפשרי. לדוגמה, תקפות לוגית של טיעון חייבת להיות תלויה בצורה הלוגית של הטענות המקושרות בו, ללא קשר לפירוש שאנו נותנים למונחים הלא - לוגיים המופיעים בהן.

מכאן שהלוגיקה המודרנית עוסקת בבחינת תכונותיהן הצורניות של מערכות לוגיות, הן מבחינת התחביר שלהן והן מבחינת הסמנטיקה שלהן. למחקר כזה קוראים מטא - לוגיקה. מבין התכונות הצורניות החשובות ביותר של מערכות לוגיות, ניתן להזכיר את התכונות הבאות, אשר את קיומן עבור מערכות מסוימות ניתן להוכיח או לשלול:

עקביות (consistency) - זוהי תכונתן של מערכות לוגיות שאין סתירה בין אי אלו מן הטענות המוכלות בהן

שלמות (completeness) - זוהי תכונתן של מערכות לוגיות שבהן לגבי כל נוסחה אמיתית, ניתן לספק לה הוכחה מן האקסיומות.

נאותות (soundness) - בניגוד לנאותות של טיעון, שהיא התכונה של טיעון תקף שבו כל ההנחות אמיתיות, נאותות של מערכת לוגית היא התכונה לפיה אם נוסחה מסוימת ניתנת להוכחה מן האקסיומות על פי חוקי התחשיב, אזי נוסחה זו אמיתית.

הוכחות לשלמות ולנאותות מעידות על הזיקה שבין התחביר והסמנטיקה של המערכת. התחביר קובע איזו נוסחה היא תיאורמה (או משפט), דהיינו איזו נוסחה ניתנת לגזירה מן האקסיומות, באמצעות כללי ההיסק. הסמנטיקה קובעת איזו נוסחה היא טאוטולוגיה, דהיינו איזו נוסחה היא אמיתית בהכרח מכוח משמעותם של המונחים המקושרים בה והאופן בו הם מקושרים. לפי הגדרות אלו, למערכת יש שלמות, כאשר כל טאוטולוגיה היא גם תאורמה. למערכת יש נאותות, כאשר כל תיאורמה היא טאוטולוגיה.

ניתן לראות כי התכונות נאותות ושלמות קשורות זו לזו, אף שלא כל מערכת נאותה היא גם שלמה. קורט גדל הוכיח ב - 1931 שבמערכות לוגיות שהן חזקות מספיק (כאלו שכוללות את האריתמטיקה בתוכן, כמו המערכת שהציע ברטראנד ראסל בפרינקיפיה מתמטיקה), יש נוסחאות אמיתיות שלא ניתן להוכיח אותן או את שלילתן. חוק זה נקרא משפט אי השלמות של גדל.

תחשיב הפסוקים

תחשיב הפסוקים מאפשר לייצג את הקשרים בין ערכי האמת של טענות (פסוקים) שונות. תחשיב הפסוקים אינו מתחשב בטענות אלא שאם יש להן ערכי אמת, דהיינו הוא אינו בוחן את הצורה הפנימית של הטענות, ואת הקשרים שהן מציגות, למשל, בין אובייקטים (בתחשיב הפרדיקטים, הנידון להלן, יש ניתוח של מבנה עומק זה). הסמנטיקה של תחשיב הפסוקים מורה לנו כיצד עלינו להבין את היחס בין הסמלים המייצגים פסוקים שונים, ובין טענות מן השפה הטבעית. כאשר אנו מעוניינים לנתח טיעון בשפה הטבעית באמצעות תחשיב הפסוקים, הצעד הראשון שעלינו לעשות מכונה הצרנה'. בתהליך זה מסמנים כל משפט חיווי בסיסי (למשל 'השמש תזרח מחר' או 'יוסי גר בלונדון') בסימן קבוע (בדרך כלל אות אנגלית גדולה כמו P או Q, או הסימן Pi עם האינדקס i, המייצג מספר מסוים). סימן זה משמש לייצג את הטענה בכל מקום שתופיע בטיעון, והוא מכונה "פסוק יסודי", או "פסוק אטומי". תחשיב הפסוקים אינו עוסק בשאלה כיצד נקבע ערך האמת של פסוקים אטומיים, אלא בשאלה כיצד נקבע ערך האמת של פסוקים מורכבים יותר, המורכבים ממספר פסוקים אטומיים באמצעות קַשַּרים לוגיים. ערך האמת של הפסוקים האטומיים יכול להיקבע על ידי הפירוש הסמנטי שאנו נותנים לאותיות הפסוקיות, אולם ניתן גם להשאיר אותו כמשתנה, ולבחון כך את כלל היחסים האפשריים בין הטענות המורכבות, עבור כל הצבה של ערכי אמת לאותיות הפסוקיות. באמצעות הכללה כזו ניתן לקבוע כי טיעונים הם תקפים, כאשר עבור כל הצבה של ערכי אמת לפסוקים האטומיים המרכיבים את ההנחות, כאשר הצבה כזו עושה את ההנחות של הטיעון לאמיתיות, היא גם עושה את המסקנה לאמיתית.

תחביר לתחשיב הפסוקים

תחשיב פסוקים מסוים כולל קבוצה של "פסוקים יסודיים" או "פסוקים אטומיים", ומספר קָשַרים לוגיים סטנדרטיים. לדוגמה, נגדיר ש P מייצג את הטענה "הגביע הוא שלנו", ו - Q מייצג את הטענה "אנחנו במפה"'. או אז ניתן להדגים את התחביר של חמשת הקשרים הלוגיים כך:

שלילה: \ neg - זהו קשר אונרי, דהיינו הוא מקושר לאות פסוקית אחת בלבד. לדוגמה, \ neg P מייצג את "הגביע הוא לא שלנו". קוניוקציה ("וגם"): \ land או & - קשר בינארי, מקשר בין שני פסוקים. לדוגמה, הפסוק המורכב P \land Q מייצג את הטענה "הגביע הוא שלנו ואנחנו במפה". דיסיונקציה ("או"): \ vee - קשר בינארי, מקשר בין שני פסוקים. לדוגמה, הפסוק המורכב P \vee Q מייצג את הטענה "הגביע הוא שלנו או אנחנו במפה". תנאי ("אם - אז"): \ to - קשר בינארי, מקשר בין שני פסוקים. לדוגמה, הפסוק המורכב P \to Q מייצג את הטענה "אם הגביע הוא שלנו אז אנחנו במפה". תנאי כפול ("אם - ורק - אם"): \ leftrightarrow - קשר בינארי, מקשר בין שני פסוקים. לדוגמה, הפסוק המורכב P \leftrightarrow Q מייצג את הטענה "הגביע הוא שלנו אם ורק אם אנחנו במפה".

הסמנטיקה של הקשרים הקלסיים (שתדון להלן) מאפשרת להביע חלק מן הקשרים במונחים של הקשרים האחרים, וכך לבנות גרסאות שונות של תחשיבי פסוקים, שצורתם שונה אך זהים מבחינת כוח הביטוי שלהם, באמצעות בחירה שונה של הקשרים המשתתפים. לדוגמה, אפשר להביע את קשר התנאי ("אם A אז B") באמצעות דיסיונקציה ושלילה ("B או לא - A"). כללי דה - מורגן מאפשרים להביע דיסיונקציה במונחים של קוניוקנציה ושלילה, וקוניונציה במונחים של דיסיונקציה ושלילה. וכו'.

תחשיב פסוקים שלם (או קבוצה שלמה של קשרים) הוא קבוצת קשרים שאפשר להציג באמצעותה כפסוק כל פעולה בוליאנית או כל טבלת אמת (ר' להלן). ניתן להגדיר שני קשרים לא קלאסיים, שכל אחד מהם מאפשר בעצמו תחשיב פסוקים שלם. קשרים אלו הם הקשרים קו - שפר ("לא - וגם", NAND) ו"לא - או" (NOR). למשל, באמצעות התנאי והשלילה, נביע את הקשרים האחרים כך:

a \lor b מוגדר כ - \ neg a \to ba \land b מוגדר כ - \ neg(a \to \neg b) a \leftrightarrow b מוגדר כ - \ neg((a \to b) \ to \neg (b \to a))

סמנטיקה לתחשיב הפסוקים

במסגרת הסמנטיקה של תחשיב הפסוקים, כל פסוק יסודי יכול לקבל אחד משני ערכי אמת: "אמת" או "שקר", ובלבד שהוא מקבל את אותו ערך בכל הופעה שלו באותו טיעון. כל קשר לוגי מובן כפונקציית - אמת, דהיינו עבור כל צירוף של ערכי אמת, מחזיר הקשר ערך אמת אחד ויחיד. לדוגמה, השלילה מחזירה פסוק שקרי עבור כל פסוק אמיתי אליו היא מקושרת, ומחזירה פסוק שקרי עבור כל פסוק אמיתי. נוח לייצג פונקציות אמת באמצעות טבלת אמת, בהן T ו - F מייצגים את הערכים אמת ושקר, בהתאמה (באלגברה בוליאנית יוחלפו אלו בערכים 1 ו - 0 בהתאמה). בטורים הימניים של הטבלה אנו ממצים את כלל הצירופים האפשריים של ערכי האמת הניתנים לפסוקים היסודיים, ובטורים השמאליים אנו מציגים את ערך האמת המתקבל עבור הפסוק המורכב:

כל שיוך של ערכי אמת לפסוקים יסודיים נקרא פירוש ("אינטרפרטציה") או הצבה. בטבלאות האמת, כל שורה היא פירוש. פסוק מורכב המקבל את הערך "אמת" בכל פירוש של הפסוקים היסודיים (כלומר כזה שבטבלת האמת שלו הוא מקבל T בכל השורות, נקרא טאוטולוגיה. משמעות הדבר היא שפסוק זה הוא אמיתי בזכות הקשרים הלוגיים שבין רכיביו, ללא תלות באמיתותם של הפסוקים האטומיים עצמם. פסוק המקבל את הערך "שקר" בכל פירוש נקרא סתירה. פסוק הוא קונטינגנטי אם ורק אם אינו סתירה ואינו טאוטולוגיה. קבוצה של פסוקים נקראת עקבית (קונסיסטנטית) אם קיים פירוש עבורו כל הפסוקים בקבוצה מקבלות ערך "אמת".

טבלאות אמת הן כלי נוח לשם בדיקת תקפותם של טיעונים (היסקים) בתחשיב הפסוקים. הטכניקה של טבלאות אמת מאפשרת לבטא את ערכי האמת של כל פסוק מורכב במונחי ערכי האמת של הפסוקים המרכיבים אותו, וכאשר הטבלה גמורה, ניתן לבדוק האם ישנם מצבים בהם ההנחות של הטיעון אמיתיות אבל המסקנה שקרית. אם יש שורה כזו בטבלה, הרי שהטיעון אינו תקף, שהרי זו דוגמה נגדית. אולם אם אין שורה כזו, הראנו שהטיעון תקף.

מערכות הוכחה לתחשיב הפסוקים

ניתן לבנות לתחשיב הפסוקים מערכות הוכחה, שבהן ניתן להוכיח מקבוצת טענות נתונה טענות נוספות שנובעות ממנה. מערכות היסק אלה בנויות מכללים סינטקטיים (תחביריים) טכניים בלבד. המערכת הפשוטה ביותר מכונה מערכת הדדוקציה הטבעית, המכילה עשרה כללי היסק. עבור כל אחד מחמשת הקשרים היא מכילה כלל הכנסה (Introduction) וכלל הוצאה (Elimination). מערכת זו היא נאותה (כלומר, כל נוסחה שניתנת להוכחה, היא אמיתית) ושלמה (כלומר, כל נוסחה אמיתית גם ניתנת להוכחה מקבוצה זו במערכת).

תחשיב הפרדיקטים

תחשיב פרדיקטים מסדר ראשון הוא מערכת אקסיומטית המאפשרת לטפל בפסוקים שהמבנה הבסיסי שלהן כולל נשואים (פרדיקטים) החלים על אובייקטים, או על משתנים שערכיהם הם אובייקטים. הפרדיקטים עצמם הם פונקציות המחזירות ערך אמת (אמיתי או שקרי) עבור אובייקטים מסוימים או עבור משתנים מסוימים. בתחשיב פרדיקטים מסדר גבוה יותר, פרדיקטים יכולים לחול על פרדיקטים אחרים וכמתים יכולים לחול על פרדיקטים. במתמטיקה תחשיב הפרדיקטים מופיע כשפה מסדר ראשון או כשפה מסדר שני.

תחביר של תחשיב הפרדיקטים

גם בתחשיב הפרדיקטים נעשה שימוש בכל הקשרים הלוגיים הסטנדרטיים המוכרים מתחשיב הפסוקים (או בחלק מהם, ובלבד שתיווצר קבוצה שלמה של קשרים באמצעותה ניתן להביע כל פעולה בוליאנית): \ neg,\ to,\ land,\ vee,\ leftrightarrow. בנוסף מופיעים בתחשיב שני כמתים, \ exists הוא הכמת הישי, המביע שפרדיקט מסוים מחזיר אמת עבור אובייקט אחד לפחות מתוך התחום. \ forall הוא הכמת הכולי או האוניברסלי, המציין כי עבור כל אובייקט בתחום, פרדיקט מסוים מחזיר ערך אמת.

הסמלים של תחשיב הפרדיקטים מציינים משתנים (מצוינים באותיות x,y,z עם או בלי אינדקס ממוספר), קבועים (שמות, המצוינים באותיות a,b,c וכו') ופרדיקטים (מצוינים באותיות גדולות Px, Rxy, וכו'), וכן קבועים לוגים (הקשרים והכמתים) וסימני פיסוק (סוגריים). לעתים כוללים את יחס הזהות בסימני התחשיב וכך נעשה להלן.

את הנוסחאות הבנויות היטב של התחשיב ניתן להגדיר באינדוקציה ע"פ חמשת הכללים התחביריים (סינטקטיים) הבאים:

1.אם P הוא פרדיקט המקבל n ארגומנטים, (P(t1... tn היא נוסחה בנויה היטב

2.אם t1 ו - t2 הם שמות או משתנים, אז t1 = t2 היא נוסחה בנויה היטב

3.אם נוסחה בנויה היטב, אזי \ neg היא נוסחה בנויה היטב

4.אם ו - נוסחאות בנויות היטב, אז לכל קשר \ Omega כך ש \ Omega \in \{ \ to,\ land,\ vee,\ leftrightarrow \}, הרי ש ( \ Omega) היא נוסחה בנויה היטב (דהיינו עבור כל שני פסוקים אטומים, הצבתו של אחד מן הקשרים הבינריים ביניהם יוצרת נוסחה בנויה היטב).

5.אם היא נוסחה ו - x הוא משתנה, \ forall x ו - \ exists x הם נוסחאות בנויות היטב

תפקידם של הסוגריים למנוע דו - משמעות בקריאה של המשפטים. עם זאת מקובל להשמיט את הסוגריים החיצוניים ביותר. כאשר בנוסחה כל המשתנים הם קשורים, דהיינו כאשר כל משתנה מצוי בטווח של כמת מתאים, הנוסחה נחשבת כפסוק (או טענה). או אז ניתן ליחס לה ערך אמת, בתלות בפירוש שהסמנטיקה נותנת לפרדיקטים ולתחום האובייקטים (ר' להלן).

בתחשיב הפרדיקטים הפסוק היסודי (או הפסוק האטומי) הוא בעל שני חלקים בלבד, פרדיקט ואובייקט, החוברים זה לזה כפי שפונקציה חלה על משתנים. דוגמאות לפסוקים כאלו ניתנות לעיל, בסעיף הלוגיקה של פרגה. כוחו של תחשיב הפרדיקטים ניכר ביכולתו להביע את קשרי ההיסק הלוגיים בין טענות שאין אפשרות להביע באמצעות תחשיב הפסוקים. למשל, ניתן להראות באמצעותו כי הטיעון הבא הוא תקף:

סוקרטס הוא פילוסוף. יש לפחות פילוסוף אחד.

בתחשיב הפרדיקטים הכמתים מופיעים כחלק מן המבנה הפנימי של הטענה, ובאמצעות כך ניתן כעת לנסח בו טענות שיש בהם כימות מרובה של מספר משתנים בעת ובעונה אחת. טכניקות אלו מעניקות ללוגיקה כוח להביע עובדות וקשרים שאינם ניתנים להבעה באמצעות תחשיב הפסוקים או בלוגיקה האריסטוטלית. למשל הוא מאפשר לתת תיאור של מושג המספר, של מושג האינסוף ושל מושג הגבול באנליזה המתימטית של פונקציות, שכן לשם הבעת מושגים אלו יש צורך בטענה מרובת כמתים מן הצורה "לכל קיים כך ש...". דוגמה פשוטה יחסית לאופן בא נעשה שימוש כזה בכמתים היא ההצרנה של הטענה "לכל אחד יש חבר", כאשר נציין את היחס בין חברים שוב כפרדיקט דו - מקומי, F:

\ \ forall x \exists y Rxy

דוגמאות נוספות ניתנות בערך תחשיב הפרדיקטים.

סמנטיקה של תחשיב הפרדיקטים

הסמנטיקה של תחשיב הפרדיקטים מציעה פירושים, אשר במסגרתם בלבד ניתן ליחס לפסוקים ערך אמת. פירוש מסוים מעניק מובן לכל אחד מן הקבועים הלא לוגים (השמות והפרדיקטים) וקובע את תחום - הדיון אשר על פיו נקבע הטווח של הכמתים. לדוגמה:

תחום הדיון D הוא קבוצת האובייקטים {דני, רני, יוני} השמות: a ו - b מייצגים את דני ורני בהתאמההפרדיקטים: הפרדיקט החד - מקומי "חכם" מצוין על ידי P, ומקבל ערך אמת עבור האובייקטים {דני, רני} הפרדיקט הדו - מקומי "חבר של" מצוין על ידי R והקבוצה של האובייקטים המשויכת אליו היא הקבוצה המכילה את הזוג {<רני, יוני>}.

לא כל אובייקט בתחום דורש שיינתן לו שם. אולם צריך להיות ברור מן הסמנטיקה, עבור כל אובייקט וכל פרדיקט בתחום, האם הפרדיקט חל עליו או לא.

כעת ניתן להעריך את ערך האמת של הפסוקים הבאים בפירוש הנוכחי:

\ neg\forall x Px

- מכיוון שבתחום הדיון שלנו לא לכל x הפרדיקט P מחזיר אמת, הפסוק אמיתי.

\ neg \exists x Rxa או הפסוק השקול: \ forall x \neg Rxa

- מכיוון שבתחום הדיון שלנו אין אף אובייקט x כך שבזוג יחד עם דני (a) הפרדיקט R מחזיר אמת, הפסוק אמיתי.

\ forall x (Px \to \exists y Py)

- מכיוון שבתחום הדיון שלנו, עבור כל x ש - P חל עליו ניתן למצוא אובייקט y ש - P חל עליו, הפסוק אמיתי.

ענפי משנה נוספים של הלוגיקה בת ימינו

לוגיקה מודלית

לוגיקה מודָלית (modal logic) היא הרחבה של הלוגיקה הקלאסית, המאפשרת הגדרה פורמאלית של ביטויים מודליים. ביטויים מודליים הם למשל כאלה המאפיינים את אמיתותם של משפטים, כגון "הכרחי" ו"אפשרי". לדוגמה, על פסוק כמו "יורד גשם", ניתן להפעיל את האופרטורים המודליים של ההכרח והאפשרות ולקבל "בהכרח יורד גשם" או "אפשרי שיורד גשם". הלוגיקה המודלית מציעה מספר מערכות אקסיומטיות בעלות תכונות שונות, והיא ניתנת להחלה במספר תחומים נוספים, למשל לשם תיאור מושגים דאונטיים (מושגי החובה וההיתר המוסרי, אותם ניתן להחיל על טענות הקובעות מה ראוי, מה אסור, ומה מותר) וטמפורליים (המאפשרת להביע את המובן הזמני של טענות כאופרטורים החלים על טענות לא - זמניות, וכך לייצג קשרי היסק לוגיים בין טענות אלו), וכן בתורת הידיעה (לוגיקה אפיסטמית) ובהסתברות.

לוגיקה אינטואיציוניסטית

הלוגיקה האינטואיציוניסטית נובעת מעבודתו של המתמטיקאי לויצן אגברטוס יאן בראואר. היא אינה מכירה בחוק השלישי הנמנע (לפיו כל טענה היא אמיתית או שקרית, ללא חלופה אפשרית אחרת), ולפיכך היא אינה מאפשרת הוכחה בדרך השלילה. אקסיומת הבחירה של תורת הקבוצות נדחית אף היא. הלוגיקה האינטואיציוניסטית נוסחה באופן פורמאלי על ידי ארנד הייטינג וארט בישופ, וקיבלה את התורה הסמנטית שלה מאת סול קריפקה.

לוגיקה עמומה

לוגיקה עמומה, או לוגיקה מעורפלת (באנגלית: Fuzzy Logic), הוא שם כללי לתורות לוגיות המנסות להחיל את עקרונות החשיבה הרציונלית על תחומים שבהם נראה כי שני חוקי היסוד של הלוגיקה הקלאסית אינם מתאימים. בעיקר מדובר על תחומים שבהם יש צורך להתבסס על הערכות סובייקטיביות או רב - משמעיות (בתחומים הקשורים למדעי החברה או לכלכלה, כמו שיווק למשל).
תורת הקבוצות חוסר נוחות אפלטוני רציונאליות אונטולוגיה יכולת החשיבה יכולות להציג בעיה פנימיות לוגיקה
דיבור / ביקורת חיובית - מה הופך דיבור לטוב וביקורת לביקורת בונה?
...- מה הופך דיבור לטוב וביקורת לביקורת בונה? דיבור טוב. כולם אוהבים טוב וכולם רוצים לשמוע טוב. מה הופך דיבור לטוב? הגורם האחראי לכך שדיבור יהיה טוב, הוא הדעת. ככל שהדיבור של האדם מקושר יותר אל הדעת והמחשבה שלו, הדיבור נחשב לטוב יותר. כאשר הדיבור מקושר אל הדעת הוא הופך לטוב. משום שדעת אמיתית פירושה הבנה מלאה של כל הצדדים של המטבע וראיית התמונה המלאה. כאשר האדם רואה את התמונה המלאה של המציאות, ממילא הוא אוהב את כולם באמת ודן את כולם לכף זכות. כאשר הדיבור...
הכל תלוי בהבנה, התאמה בין חוויה להבנה, הארה רוחנית אמיתית, מהו אושר מוחלט? מהי שלמות מוחלטת? המבחן של המורה הרוחני, המבחן של ההארה הרוחנית, לזהות מורה רוחני, מי הגיע להארה?
הכל תלוי בהבנה, התאמה בין חוויה להבנה, הארה רוחנית אמיתית, מהו אושר מוחלט? מהי שלמות מוחלטת? המבחן של המורה הרוחני, המבחן של ההארה הרוחנית, לזהות מורה רוחני, מי הגיע להארה?
...מהי שלמות מוחלטת? המבחן של המורה הרוחני, המבחן של ההארה הרוחנית, לזהות מורה רוחני, מי הגיע להארה? מהי הבנה אמיתית ומה הקשר בינה לבין חוויה? אליעד כהן מסביר שכאשר מדובר על הבנה רוחנית, הבנה מוחלטת או הארה אמיתית, קיימת התאמה מלאה בין ההבנה לבין החוויה. הוא טוען שאין אפשרות שאדם באמת מבין משהו באופן מלא ומוחלט מבלי שהוא יחווה אותו במלואו. אדם יכול לשנן רעיונות, לדקלם משפטים או להסביר תאוריות בצורה שכלית, אך אם הוא אינו חווה אותם, המשמעות היא שאין לו...
זיכרון / שיפור הזיכרון / שכחה - איך לשפר את יכולת הזיכרון? איך לזכור דברים? איך לא לשכוח דברים?
...דברים? ובו יתבאר העניין של הזיכרון. איך לשפר את הזיכרון? איך לזכור ולא לשכוח דברים? ומי שיתבונן יראה, כי קיימות שיטות שונות ודרכים שונות לשפר את הזיכרון. אך יש דרך אחת, שהיא תמיד עובדת. היא לא בהכרח הכי קלה, אבל היא תמיד עובדת. והדרך היא, להשתחרר מהצורך לזכור. דהיינו, אם אתה מפחד לשכוח משהו, פשוט אל תצטרך לזכור אותו. ומה זא? זא, שאם תצליח להבין באמת את הדבר שאותו אתה רוצה לזכור, זה יאפשר לך, לא להצטרך לזכור אותו. כי מאחר שאתה מבין אותו, ממילא לא...
למה משהו עושה לי רע? למה רע לי ממשהו? למה רע לי כל הזמן? למה כל הזמן רע לי? למה כל הזמן יש לי בעיות? למה הצרות רודפות אחרי? טעויות בחקירה עצמית, להאשים את המציאות החיצונית, לקחת אחריות על זה שרע לך, להאשים את עצמך, סבל
למה משהו עושה לי רע? למה רע לי ממשהו? למה רע לי כל הזמן? למה כל הזמן רע לי? למה כל הזמן יש לי בעיות? למה הצרות רודפות אחרי? טעויות בחקירה עצמית, להאשים את המציאות החיצונית, לקחת אחריות על זה שרע לך, להאשים את עצמך, סבל
...לי ממשהו? למה רע לי כל הזמן? למה כל הזמן רע לי? למה כל הזמן יש לי בעיות? למה הצרות רודפות אחרי? טעויות בחקירה עצמית, להאשים את המציאות החיצונית, לקחת אחריות על זה שרע לך, להאשים את עצמך, סבל למה תמיד רע לי ממשהו? כאשר בן אדם חש שרע לו ממשהו מסוים, כמו בעיות בעבודה, בזוגיות, עם השכן או כל דבר אחר, הוא בדרך כלל חושב שהבעיה היא באותו גורם חיצוני שמטריד אותו. לדוגמה, אדם אומר: רע לי בעבודה, והוא בטוח שהעבודה היא הסיבה לרע שהוא חש. אבל לפי אליעד כהן,...
פחד וחרדה - מהי הסיבה של כל החרדות והפחדים?
פחד וחרדה - מהי הסיבה של כל החרדות והפחדים?
...מהי הסיבה האמיתית לכל הפחדים והחרדות בעולם? כל אדם מתמודד עם פחדים וחרדות ברמה כלשהי. למשל, אדם שאינו רוצה לחלות למעשה מפחד להיות חולה, ואדם שנזהר מליפול כשהוא הולך ברחוב למעשה חושש מנפילה. מה שמשתנה בין האנשים הוא רק העוצמה והמינון של הפחד. כאשר הפחד הופך להיות אינטנסיבי במיוחד ואדם נעשה אובססיבי לדבר שמפחיד אותו, זה הופך לחרדה של ממש. אליעד כהן מסביר כי בעולם קיימים סוגים רבים של פחדים וחרדות, אבל השורש האחד והיחיד שלהם הוא התפיסה של האדם לגבי...
קושי לקבל החלטה, לקבל החלטה בקלות, לא יודע מה להחליט, איך לדעת מה להחליט? דילמה בקבלת החלטות, ספקות בקבלת החלטות, חושש לקבל החלטה, מפחד לקבל החלטה, לדעת מה להחליט
קושי לקבל החלטה, לקבל החלטה בקלות, לא יודע מה להחליט, איך לדעת מה להחליט? דילמה בקבלת החלטות, ספקות בקבלת החלטות, חושש לקבל החלטה, מפחד לקבל החלטה, לדעת מה להחליט
...יודע מה להחליט, איך לדעת מה להחליט? דילמה בקבלת החלטות, ספקות בקבלת החלטות, חושש לקבל החלטה, מפחד לקבל החלטה, לדעת מה להחליט למה קשה כל כך לקבל החלטות? קבלת החלטות היא פעולה שאנחנו עושים כל יום, כל הזמן. לעיתים החלטות פשוטות כמו מה לאכול, מה ללבוש או איפה לעבוד, הופכות להיות סיוט שמלווה בספקות, חששות ואינסוף שאלות. אליעד כהן מסביר בהרצאה מדוע אנשים מתקשים כל כך להחליט ואיך אפשר להתמודד עם קבלת החלטות בלי לסבול מהספקות שמגיעים איתן. מדוע אנשים מסתבכים...
מחוייב או אפשרי, אפשרי או מחוייב, מחוייב המציאות, אפשרי המציאות, לחייב את האפשרי, לאפשר את המחוייב, חלק 2
מחוייב או אפשרי, אפשרי או מחוייב, מחוייב המציאות, אפשרי המציאות, לחייב את האפשרי, לאפשר את המחוייב, חלק 2
...לחייב את האפשרי, לאפשר את המחוייב, חלק 2 מה המשמעות של להפוך את האפשרי למחויב ואת המחויב לאפשרי? אליעד מסביר על החשיבות של הבנת ההבדל בין מחויב המציאות לבין אפשרי המציאות. כדי להבין את ההבדל לעומק, אליעד נותן דוגמה מהיום יום: מישהי אמרה שהיא לא רוצה משהו שהוא הציע לה, כי היא חשבה שהוא מציע לה משהו אחר. אך לאחר שראתה במה מדובר, היא החליטה שכן רוצה. אליעד מדגיש שהטעות שלה הייתה שהפכה את האפשרי למחויב, היא חשבה שמה שאליעד ייתן לה הוא בהכרח מה שהיא דמיינה...
ממי לקבל עצות, מי יודע ללמד? איך לבחור מטפל? איך לבחור מאמן? איך לבחור יועץ? מי יכול לייעץ? ממי ללמוד, אימון עסקי, אימון אישי, אימון לחיים, מאמן עסקי, יועץ עסקי, מאמן אישי, יעוץ אישי
ממי לקבל עצות, מי יודע ללמד? איך לבחור מטפל? איך לבחור מאמן? איך לבחור יועץ? מי יכול לייעץ? ממי ללמוד, אימון עסקי, אימון אישי, אימון לחיים, מאמן עסקי, יועץ עסקי, מאמן אישי, יעוץ אישי
...מטפל? איך לבחור מאמן? איך לבחור יועץ? מי יכול לייעץ? ממי ללמוד, אימון עסקי, אימון אישי, אימון לחיים, מאמן עסקי, יועץ עסקי, מאמן אישי, יעוץ אישי למה עדיף ללמד אדם לדוג מאשר לתת לו דגים? הנושא המרכזי שאליעד כהן מציג הוא השאלה הידועה: האם עדיף ללמד אדם לדוג או לתת לו דגים מוכנים? התשובה אינה פשוטה, משום שיש מספר אפשרויות ומניעים שונים מאחורי הבחירה הזו. אליעד מציין שלעתים אדם שרוצה לשלוט בך יעדיף לתת לך דגים, ככה תישאר תלוי בו ותחזור בכל יום מחדש לקבל...
סוד *השקר* של חשיבה חיובית - מהו הסוד שבגללו חשיבה חיובית היא *שקר*? חלק 2
...חלק 2 וגם אם האדם יעלה לשמים וירד לארץ, הוא ימשיך לחוות תחושה של חוסר סיפוק ושל ריקנות קיומית, כל זמן שהוא לא מבין את המציאות בשלמות. והדברים האלו, הם האמת לאמיתה. וכל אחד שמתבונן על האמת הפנימית שלו מתוך ישוב הדעת, הוא יודה על האמת, שהכל זאת האמת לאמיתה ככתבה וכלשונה. וממילא זה אומר, שהחשיבה החיובית היא שקר גדול. משום שהיא יוצרת אצל האדם הטעייה ואשליה, שכאילו אם הוא ישיג את המטרות שלו, אז הוא יהיה מאושר. אך זהו כמובן שקר ככ גדול, עד שרוב בני האדם...
אמון עם אנשים, איך לגרום למישהו להאמין לך? איך לגרום למישהו לתת בך אמון? לחזור על השאלה של הלקוח, לחזור על ההתנגדות של הלקוח, טיפול בהתנגדויות מכירה, הדרכת אנשי מכירות, איך לענות לשאלות? איך לגרום למישהו לא לחשוד בך? חשדות
אמון עם אנשים, איך לגרום למישהו להאמין לך? איך לגרום למישהו לתת בך אמון? לחזור על השאלה של הלקוח, לחזור על ההתנגדות של הלקוח, טיפול בהתנגדויות מכירה, הדרכת אנשי מכירות, איך לענות לשאלות? איך לגרום למישהו לא לחשוד בך? חשדות
...לחזור על השאלה של הלקוח, לחזור על ההתנגדות של הלקוח, טיפול בהתנגדויות מכירה, הדרכת אנשי מכירות, איך לענות לשאלות? איך לגרום למישהו לא לחשוד בך? חשדות איך לגרום למישהו להאמין לך כשיש לו ספקות? כאשר אדם שואל אותך שאלה חשדנית, מאשימה או לא נעימה, ואתה מעוניין לשכנע אותו שאתה דובר אמת, קיימת דרך אפקטיבית במיוחד ליצירת אמון: חזרה והסבר של השאלה עצמה לפני שאתה נותן תשובה. לפי אליעד, כאשר אדם חש חוסר אמון, הסיבה העיקרית לכך היא תחושה שאתה מסתיר משהו או...
דברים שנראים לכאורה בלתי אפשריים לפתרון
...אפשריים לפתרון יש דברים שנראים לכאורה בלתי אפשריים לפתרון אבל, אם מתאמצים מגלים את ההיפך. יש למשל תרגיל שנראה לכאורה בלתי פתיר, ואם מתייאשים חושבים שאין סיכוי לפתור. אבל אם מתאמצים עוד, וממשיכים, מגלים עוד חורים וחוסר אפשרויות נוספות. יש כאן סיכוי להתייאש ולהגיד שאפשר להמשיך לדבר הבא. אבל, עדיין ממשיכים ומגלים חוסר אפשרות ומבוי סתום, ואז חושבים שמגיעים לדרך ללא מוצא. ואז דווקא אז מתוך חוסר המוצא הזה, מגלים דרך שנפסלה ונראתה לכאורה בלתי אפשרית. הדרך...
אימון אישי - מאמן אישי או רקדן ברחבת הלא נודע?
...אישי - מאמן אישי או רקדן ברחבת הלא נודע? רבים פונים אל שירותיו של מאמן אישי במטרה למצוא תשובות, ידע, עצות ופתרונות. אם אותו מאמן אישי הוא מקצועי מספיק, הם מגלים להפתעתם שהתשובות האמיתיות לשאלות הכי גדולות בחייהם, נמצאות אצלם בפנים. הם מגיעים אל מאמן אישי כמו בצל שעטוף בשכבות רבות וממפגש אימון אחד לשני, הם מסירים מעצמם בעזרת אותו מאמן אישי, קליפה אחר קליפה שוב ושוב עד שמגיעים לגרעין. הגרעין משקף את מי שהם באמת, או יותר נכון, את מי שהם נועדו להיות...
למה - עד מתי צריך לשאול למה ומה הסיבה?
...וידאו + MP3 בנושא: הרצאה על למה - עד מתי צריך לשאול למה ומה הסיבה?. למה - עד מתי צריך האדם לשאול את עצמו למה, ומה הסיבה? היום אשיב על השאלה, עד מתי, צריך האדם לשאול את עצמו למה? ומה הסיבה? כפי שהסברתי, אדם הרוצה להיות מאושר, האדם צריך להתבונן ולהבין את עצמו. והיה והאדם ישאל את עצמו מספיק פעמים, למה? ומה הסיבה? הוא יבין האם זה מחויב המציאות, או לא מחויב. כל שאלה אחרת, כל נושא לבדוק אותו, האם הוא האמת? האם זה יכול להיות אחרת? והרבה פעמים האדם מגיע...
אלוהים, יש או אין אלוהים קיים או לא, בריאת העולם, המפץ הגדול, הוכחה שאין יש אלוהים, יש מאין, כלום או הכל
...אלוהים קיים או לא, בריאת העולם, המפץ הגדול, הוכחה שאין יש אלוהים, יש מאין, כלום או הכל לחץ כאן, לצפייה בהרצאת וידאו + MP3 בנושא: אלוהים, יש או אין אלוהים קיים או לא, בריאת העולם, המפץ הגדול, הוכחה שאין יש אלוהים, יש מאין, כלום או הכל. שאלה: מי זה אלוהים? אליעד: אם אתה רוצה את האמת, אתה לא יכול לשאול מי זה אלוהים, כי למעשה אתה מניח שיש אלוהים, ואולי אין אלוהים בכלל. למה אני באתר שואל שאלות על אלוהים, ומנסה להוכיח שיש למשל שני אלוהים, אז למה אני עושה...
כיצד לפתח ולהעצים את את עיני השכל של האדם? כיצד להבין דברים לעומק? חלק 2
...לפתח ולהעצים את את עיני השכל של האדם? כיצד להבין דברים לעומק? חלק 2 המשך מ: כיצד לפתח ולהעצים את את עיני השכל של האדם ? כיצד להבין דברים לעומק ? חלק 1. דוגמה נוספת מהחיים. כולנו לדוגמה יודעים שניתן לבקש הנחה כספית מבעל מקצוע שמבצע עבורנו עבודה מסוימת. כולנו יודעים גם כי ככל שמתח הרווחים של בל המקצוע גדול יותר, כך ניתן להתווכח איתו ולקבל ממנו הנחה גדולה יותר. כיצד אנו יודעים זאת? אנו יודעים את זה הן מנסיון אישי שלנו והן מניסיונם של אנשים אחרים שידוע...
איך למצוא תשובות לשאלות?
...בהרצאת וידאו + MP3 בנושא: תשובות לשאלות - איך למצוא תשובות לשאלות?. מה השיטה למצוא תשובות לשאלות? לפעמים יותר טוב לא למצוא תשובות לשאלות, לפעמים טוב שיש שאלות, אם אדם ידע את כל התשובות אין התחדשות, החיים יותר מעניינים שיש שאלות. איך אדם יכול למצוא תשובות לכל שאלה תשובה. נוסחה מדוייקת למצוא תשובות לכל השאלות. הדרך היא עי הבנת הגורמים שעליהם היא מבוססת. האם כדור הארץ עגול? הנחת יסוד ראשונה יש כדור ארץ. הנחת יסוד שאו שטוח ואו עגול. האם כדור הארץ עגול...
שכל ואושר - מה הקשר בין שכל לבין אושר?
...לבין אושר? לחץ כאן, לצפייה בהרצאת וידאו + MP3 בנושא: הרצאה על שכל ואושר - מה הקשר בין שכל לבין אושר?. הרצאה על הקשר שבין השכל לבין האושר. האם אין שכל אין דאגות? מהי האמת? ועוד. נדבר כאן על הקשר שיש בין שכל לבין אושר, מה הקשר שבין שכל לבין אושר? אחד המשפטים הגדולים בעולם, אין שכל אין דאגות ואחד השקרים הגדולים בעולם שיש בו מן האמת, שלמי שאין שכל אין לו דאגות. ויש קשר בין שכל ואושר. בדיוק כמו שיש קשר לבין אושר ואין שכל. ולא בזה תלוי האושר לא משנה אם...
הצלחה - לחגוג הצלחה, לחגוג את החיים
...הצלחה, לחגוג את החיים המון פעמים אומרים לנו שאין דבר כזה כישלון, שזה נקרא ניסיון ושצריך לקום, להפיק את הלקח, ללמוד מהטעויות שלנו ולהמשיך הלאה. זה נכון, אבל המון פעמים מפספסים משהו לא פחות חשוב: מה לגבי ללמוד מ - הצלחה. מה לגבי ללמוד מהפעמים שכן חווית הצלחה, שכן זכית להצלחות. אין דבר כזה בן אדם שמעולם לא הצליח. הא פשוט בוחר שלא להתמקד בדבר הנכון, שלא להתמקד ב - הצלחה. אבל אם נלמד רק מהטעויות שלנו ו או מהטעויות של אחרים סביבנו, זה יראה לנו רק מה לא...
בודהיזם - הארהנט
...מהכל לחלוטין והכחיד את כל הקשרים קדחת התשוקות אינה קיימת עוד. 91 המודעים מאמצים את עצמם הם אינם קשורים לאף בית כמו ברבורים שנטשו את האגם הם מותירים מאחור בית אחר בית. 92 אלו שאינם צוברים ונבונים ביחס למזון שמושאם הוא הריק החופש חסר ההתניות - דרכם היא כזו של הציפורים באוויר בלתי ניתנת לעקיבה. 93 האדם שזיהומיו מושמדים ואינו קשור למזון שמושאו הוא הריק החופש חסר ההתניות - דרכו, היא כזו של הציפורים באוויר בלתי ניתנת לעקיבה. 94 מי שחושיו שלווים כסוסים...
הטרדה נפשית
...נפשית יכולה להיות כל יחס חוזר ונשנה מצד דמות קרובה קבועה שיש בו כדי להציק, לעייף, לתסכל, לייצר תחושה של מצבי אין ברירה חוסר אונים חוסר ערך אצל המוטרד. אדם שמטריד נפשית אחרים קרובים, בדכ עונה להגדרה של פרוורטי: אדם שלא מפקפק בעצמו, אדם ללא בדיקה עצמית, ללא מה שאנו מכנים מצפון. מכאן שהוא יכול לחולל פעולות עוינות, סמויות או גלויות בדרכים רבות, למשל בחצאי אמירות, נגיעות, רמזים, הטיות דעת, מניפולציות.. דברים שהישנותם עלולה לערער יציבותו של אדם ולהורסו...
ספרים מומלצים עבורך - ספרים על ללכת לבית ספר
 👈1 ב 150  👈4 ב 400     ☎️ 050-3331-331    שליח עד אליך - בחינם!
שקט נפשי אמיתי - הספר על: ללכת לבית ספר, איך להתמודד עם לחץ? איך להתמודד עם בעיות ריכוז והפרעת קשב וריכוז? איך להתמודד עם תסמינים של חרדה? איך להתמודד עם התקפי חרדה ופאניקה? איך להתמודד עם עצבות? איך להתמודד עם כל סוגי הפחדים והחרדות שיש? איך להתמודד עם חרדות + פחדים של ילדים? דיכאון? איך להתמודד עם מאניה דיפרסיה ועם מצבי רוח משתנים? איך להתמודד עם OCD / הפרעה טורדנית כפייתית / אובססיות / התנהגות כפייתית? איך להתמודד עם הפרעות התנהגות אצל ילדים? איך להתמודד עם פחד קהל ופחד במה / פחד להתחיל עם בחורות / פחד להשתגע / פחד לאבד שליטה / חרדת נטישה / פחד מכישלון / פחד מוות / פחד ממחלות / פחד לקבל החלטה / פחד ממחויבות / פחד מבגידה / פחד מיסטי / פחד ממבחנים / חרדה כללית / פחד לא ידוע / פחד מפיטורים / פחד ממכירות / פחד מהצלחה / פחד לא הגיוני ועוד? איך להתמודד עם אכזבות? איך להתמודד עם בדידות? איך להתמודד עם ביישנות וחרדה חברתית? איך להתמודד עם הפרעות קשב וריכוז? איך לשכוח אקסים ולא להתגעגע? איך להתמודד עם אהבה אובססיבית? איך להתמודד עם הזיות / דמיונות שווא / פרנויות / סכיזופרניה / הפרעת אישיות גבולית? איך להתמודד עם רגשות אשם ושנאה עצמית? איך להתמודד עם חלומות מפחידים וסיוטים בשינה? מועקות נפשיות וייאוש? כעס ועצבים? איך להשיג איזון נפשי? איך להתמודד עם טראומה ופוסט טראומה? איך להתמודד עם שמיעת קולות בראש ועוד...

הצלחה אהבה וחיים טובים - הספר על: ללכת לבית ספר, איך ליצור אהבה? איך למכור מוצר ללקוחות? איך לחשוב בחשיבה חיובית? איך לגרום למישהו לאהוב אותך? איך לדעת איזה מקצוע מתאים לך? איך להעביר ביקורת בונה? איך להצליח בראיון עבודה? איך לקבל החלטות? איך להעריך את עצמך? איך לטפל בהתנגדויות מכירה? איך לפרש חלומות? איך להצליח בזוגיות? איך לשפר את הזיכרון? איך להיות מאושר ושמח? איך ליצור מוטיבציה ולהשיג מטרות? איך לשנות תכונות אופי? איך להתמודד עם גירושין? איך להתמודד עם דיכאון ותחושות רעות? איך לפתח חשיבה יצירתית? איך להתמודד עם אובססיות והתמכרויות? איך להיגמל מהימורים? איך לחנך ילדים? איך לפתח יכולות חשיבה? איך להצליח בדיאטה ולשמור על המשקל? איך לעשות יותר כסף? איך להשיג ביטחון עצמי? איך לשכנע אנשים ולקוחות? איך לנהל את הזמן? איך לא להישחק בעבודה? איך לדעת אם מישהו מתאים לך? איך להאמין בעצמך? איך למצוא זוגיות? איך לשתול מחשבות ועוד...

להיות אלוהים, 2 חלקים - הספר על: איך נוצרים רצונות / מחשבות / רגשות? האם יש בחירה חופשית? מהי תכלית ומשמעות החיים? האם יש נשמה וחיים אחרי המוות? האם לדומם יש תודעה? האם יש חיים מחוץ לכדור הארץ ויקומים מקבילים? האם המציאות היא טובה או רעה? בשביל מה לחיות? איך נוצר העולם? האם באמת הכל לטובה? למה לא להתאבד? מה המשמעות של החיים? למה חוקי הפיזיקה כפי שהם? האם יש הבדל בין חלום למציאות? מה יש מעבר לזמן ולמקום? איך להנות בחיים? איך להיות מאושר? איך נוצר העולם? מה יש מעבר לשכל וללוגיקה? למה העולם קיים? למה יש רע וסבל בעולם? האם הכל אפשרי? האם אפשר לדעת הכל? איך להשיג שלמות ואושר מוחלט? איך להיות הכי חכם בעולם? האם יש או אין אלוהים? האם יש אמת מוחלטת? אולי אנחנו במטריקס? מי ברא את אלוהים? האם יש משמעות לחיים? למה יש רע בעולם ועוד...
רק כאן באתר! ✨ להנאתך, 10,000+ שעות של תכנים בלעדיים! ✨ מאת אליעד כהן!
לפניך חלק מהנושאים שבאתר... מה מעניין אותך?

חפש:   מיין:

האתר Yeda.EIP.co.il נותן לך תכנים בנושא מאמן אישי לתזונה נכונה, מאמן לחיים, טיפול נפשי בתחום ללכת לבית ספר - ללא הגבלה! לקביעת פגישה אישית / ייעוץ טלפוני אישי / הזמנת הספרים - צור/י עכשיו קשר: 050-3331-331
© כל הזכויות שמורות לכותבי המאמרים המקוריים בלבד!

האתר פותח על ידי אליעד כהן
דף זה הופיע ב 0.1250 שניות - עכשיו 23_05_2025 השעה 18:41:55 - wesi4