ידע
להצליח
⭐⭐⭐⭐⭐
הדפסה אינסוף ✔אינסוף - מבוא ✔אינסוף הוא מושג שזוכה במתמטיקה, בפילוסופיה, בתאולוגיה ובשפת היומיום למשמעויות... - ידע להצליח התחייבות! ל: להצליח...
הצטרף לחברים באתר!
שם
סיסמא
לחץ כאן
להתחבר לאתר!
💖
הספרים שמומלצים לך:
להצליח בחיים
ולהיות מאושר!






🖨אינסוף - מבוא
אינסוף הוא מושג שזוכה במתמטיקה, בפילוסופיה, בתאולוגיה ובשפת היומיום למשמעויות רבות ושונות. המשותף לרוב המשמעויות הללו הוא תפיסת האינסוף כדבר מה שתכולתו גדולה מכל דבר אחר, תהליך שלא יגיע לסופו לעולם. סימונו ברוב ענפי המתמטיקה הוא \ infty.

האינסוף במתמטיקה

במתמטיקה, ישנם שני סוגים עיקריים של אינסוף - זה הבא לתאר גודל של קבוצה שאינה סופית - גודל שכזה מכונה עוצמה. השני בא לתאר תהליכים גבוליים, ומשמעותו היא "כמה שנרצה" - כלומר, שאיפה לאינסוף פירושה שאנו יכולים להגיע למספר גדול כרצוננו. זהו אינסוף שמושתת אך ורק על אלמנטים סופיים, אך מאחוריו עומד תהליך אינסופי.

ישנן גם מערכות מספרים שכוללות בהן את האינסוף כמספר, או מרחבים שבהם האינסוף נכלל בתור איבר של המרחב. בכל המקרים הללו הדבר גורר שינוי של כמה מהתכונות המתקיימות במערכת, ולעתים אין האינסוף שהוסף אליהן מהווה יותר מסימון לצורכי נוחות בלבד.

האינסוף כתהליך הגדל כרצוננו

תכונתם של המספרים הטבעיים, שלכל אחד מהם יש מספר גדול ממנו, הייתה ידועה כבר ליוונים הקדמונים (וזכתה לשם אקסיומת ארכימדס). אם נתבונן בסדרה שאיבריה הם המספרים הטבעיים, נראה כי ככל שאנו מתקדמים בסדרה, הערכים של איברי הסדרה הולכים וגדלים בצורה כזו שעבור כל מספר טבעי, החל ממקום מסוים יהיו כל איברי הסדרה גדולים ממנו. זוהי דוגמה לתהליך של שאיפה לאינסוף, אף שהאינסוף בו בא לידי ביטוי רק באמצעות מושגים סופיים. הגדרה פורמאלית של תהליך הגדל לאינסוף ניתנה במאה ה - 17, בעת העיסוק במושג הגבול, בתחילת יצירתו של החשבון האינפיניטסימלי. במסגרת דיון זה הנהיג המתמטיקאי האנגלי ג'ון ואליס בשנת 1655 את הסמל \ infty למושג האינסוף. הסמל בא לידי שימוש, למשל, בביטוי מהצורה \ lim_ {n \to \infty} x_n שאותו יש לקרוא " הגבול של הסדרה \ x_n כאשר n שואף לאינסוף" (ראו הרחבה בעניין זה בערך גבול).

האינסוף כגודל מוחשי

הפיתוח העשרוני האינסופי של 0.999... השווה גם ל - 1 - אינסוף

העיסוק באינסוף כגודל מוחשי בא לידי ביטוי בפרדוקס של גלילאו, המדגים של תכונותיהן הלא אינטואיטיביות של קבוצות שמספר איבריהן אינו סופי (קבוצות אינסופיות). גלילאו הראה כי ניתן ליצור התאמה שממנה נובע כי מספרם של המספרים הטבעיים זהה למספרם של המספרים הריבועיים, אף שתוצאה זו סותרת לכאורה את העובדה הברורה, שיש מספרים טבעיים שאינם ריבועיים. מכאן הסיק גלילאו שמושגי ה"גדול", "קטן" ו"שווה" המוכרים לנו מקבוצות סופיות אינם תקפים באותה צורה עבור קבוצות אינסופיות, וניסיון לשימוש בהם מוביל לסתירה. המחשה נוספת לתכונות המפתיעות של קבוצות אינסופיות ניתנת בסיפור המלון של הילברט.

טיפול פורמאלי בקבוצות אינסופיות נוצר על ידי גיאורג קנטור בסוף המאה ה - 19, במסגרת פיתוחה של תורת הקבוצות. מונח העוצמה נוצר במסגרת זו כדי לבטא את גודלה של קבוצה שמספר איבריה אינו סופי, כגון קבוצת המספרים הטבעיים או קבוצת המספרים הממשיים. במסגרת זו, לקבוצת המספרים הטבעיים ולקבוצת המספרים הריבועיים יש אותה עוצמה, אף על פי שאחת הקבוצות מכילה ממש את רעותה. ריכרד דדקינד הגדיר קבוצה אינסופית ככזו שהיא שוות עוצמה לקבוצה המוכלת בה ממש.

הישג גדול של קנטור היה ההוכחה שאין מקום לדבר על גודל אינסופי יחיד, אלא יש סוגים רבים של גדלים אינסופיים. העוצמה של קבוצת המספרים הממשיים, למשל, גדולה מזו של קבוצת המספרים הטבעיים. את העוצמה של המספרים הטבעיים סימן קנטור באות העברית \ \ aleph_0 (קרי: אלף אפס), ואת עוצמת הממשיים סימן באות \ \ aleph.

יתרה מזו, משפט קנטור קובע שעוצמתה של קבוצת החזקה של A גדולה מעוצמתה של A, ובפרט אין עוצמה 'גדולה ביותר'. ניתן להוכיח כי קבוצת כל העוצמות היא כה גדולה עד כי לא ניתן לדבר על העוצמה שלה עצמה (כלומר, על פי תורת הקבוצות האקסיומטית, אוסף העוצמות גדול מכדי להיות קבוצה, והוא נחשב למחלקה). לקבוצת כל העוצמות (ולקבוצות השקולות לה), שלא ניתן לטפל בהן במסגרת תורת הקבוצות האקסיומטית, קרא קנטור "האינסוף המוחלט".

פעולות באינסוף

יש כמה דרכים שבהן ניתן לצרף את הסמל \ \ infty למערכות מספרים מוכרות. בכל אחת מדרכים אלה מקבלות פעולות מסוימות משמעות, ובאותה עת מאבדים כמה מן התכונות המקוריות של המערכת. למערכות שונות הכוללות את סמל האינסוף יש שימושים שונים בהקשרים מתמטיים שונים, ולא קיימת דרך מוסכמת, "נכונה", לטפל באריתמטיקה של הסמל הזה.

דרך אחת לבצע פעולות באינסוף היא לספח לישר הממשי, בתור קבוצה סדורה, שתי נקודות חדשות: \ \ infty ו - \ - \ infty. מבחינת יחס הסדר, המוסכמה היא ש - \ - \ infty < a < \ infty לכל a ממשי, הקבוצה נשארת סדורה לינארית. פעולת החיבור מוגדרת על - פי הכללים \ \ infty+a= \ infty ו - \ - \ infty+a= - \ infty לכל a ממשי, וכך מוגדרות כל האפשרויות לחבר שני איברים של הקבוצה החדשה, למעט \ - \ infty+\ infty, ביטוי שאינו מוגדר. אפשר להרחיב את הגדרת הכפל באופן דומה, כאשר הביטוי \ 0\cdot \infty נשאר לא מוגדר. פעולת החילוק מקיימת את הכלל \ \ frac{a} { \ infty} =0 לכל a ממשי, וגם כאן, הביטוי \ \ frac{ \ infty} { \ infty} אינו מוגדר. הקבוצה החדשה אינה שדה (משום שהפעולות אינן מוגדרות שם באופן מלא). לכך שביטויים מסוימים נשארים בלתי מוגדרים יש סיבה: אם נקבע למשל ש - \ \ infty-\ infty=0, נצטרך לקבל גם את השוויון המופרך \ 1= 1+0 = 1+( \ infty-\ infty) = (1+\ infty) - \ infty= \ infty-\ infty=0, או לוותר על האסוציאטיביות של החיבור.

ראו גם שדה המספרים הסוריאליסטיים.

האינסוף בגאומטריה

אחת התוצאות הראשונות הנובעות מהאקסיומות של הגאומטריה היא שכל ישר מכיל אינסוף נקודות. תוצאות נוספות הן שבכל מישור נמצאים אינסוף נקודות שונות ואינסוף ישרים שונים, וכן ישנם אינסוף מישורים שונים.

אחת הדרכים בהן נוהגים להתבונן על המישור המרוכב היא כעל כדור, המכונה הספירה של רימן, שמכיל את כל איברי המישור המרוכב בתוספת נקודה אחת, בקוטב הצפוני של הכדור - האינסוף. זוהי דוגמה למצב שבו האינסוף הוא נקודה לכל דבר במרחב, והיא מאפשרת טיפול נוח בפונקציות שמקבלות ערכים אינסופיים.

בגאומטריה פרויקטיבית, מוסיפים נקודה שבה נחתכים כל הישרים. זוהי נקודת האינסוף.

האינסוף בקוסמולוגיה

התגלית לפיה היקום מתפשט העלתה בהכרח את השאלה האם התפשטות היקום היא תהליך שיימשך עד אינסוף או שתהליך זה ייעצר בשלב כלשהו. שאלה זו היא שאלת מפתח בקוסמולוגיה.

האינסוף בפיזיקה

באלקטרודינמיקה קוונטית ובתורת השדות הקוונטית, שני ענפים של תורת הקוונטים שהיא נושא מרכזי בפיזיקה המודרנית, עלתה בעיה של משוואות המציגות מציאות פיזיקלית ותוצאתן אינסוף. הפיזיקאי ריצ'רד פיינמן הציע פתרון לבעיה זו, הקרוי רנורמליזציה.

האינסוף באמנות

הצייר מוריץ קורנליס אשר הרבה לחקור את מושג האינסוף ביצירותיו. רבות מיצירותיו מציגות דמויות ההולכות וקטנות לאינסוף. דוגמה מובהקת לכך היא הציור "גבול מעגל 4 - שמים וגיהנום" משנת 1960.

האינסוף בפילוסופיה

בירור ראשוני של המשמעות הפילוסופית של מושג האינסוף מופיע בפרדוקסים של זנון אותם הגה ביוון העתיקה במאה החמישית לפנה"ס. טיעוניו עוסקים בפרדוקסליות של התנועה ושל הזמן כאשר מחלקים גודל סופי נתון לחלקים רבים והולכים לבלי גבול. פתרון לפרדוקסים אלה נמצא רק בביסוס התאורטי של מושג האינסוף במתמטיקה, החל מהמאה ה - 17.

תיאור של האינסוף מופיע בכתביו של אריסטו:

תמיד אפשר לחשוב על מספר גדול יותר, משום שמספר הפעמים שבהן ניתן לחלק גודל נתון לשניים אינו מוגבל. לפיכך האינסוף הוא פוטנציאלי ולעולם לא אקטואלי. מספר החלקים שביכולתנו ליצור גדול מכל מספר נתון.

רעיונותיו של אריסטו נוסחו ביתר פירוט בימי הביניים, למשל על ידי הפילוסוף בן המאה ה - 14 ויליאם איש אוקאם.

האינסוף מופיע גם בתנ"ך. בספר איוב (פרק ה פסוק ט'): " (עושה גדֹלות ואין חקר) נפלאות עד אין מספר", כלומר: עד אינסוף (בעוד שהמילה "עד" מעידה בעברית על הגעה אל גבול, ואכן גם במתמטיקה משמש האינסוף (אנ') כגבולם של כל המספרים הסופיים).

בקבלה, מכונה התגלות האל כ"אור אין סוף", כלומר אור שאיננו מוגבל ובעל פרטים מוגדרים, כי אם מציאות מופשטת, ובעלת כוחות בלתי מוגבלים.
טיפול חשיבה מופשטת ניסיון גהנום שאלת המפתח לוותר איך לפתור בעיות הוויה הקוונטים פילוסופיה איך לבטא אינסוף
ספרים מומלצים עבורך - ספרים על אינסוף
 👈1 ב 150  👈4 ב 400     ☎️ 050-3331-331    שליח עד אליך - בחינם!
להיות אלוהים, 2 חלקים - הספר על: אינסוף, איך להיות מאושר? איך נוצרים רצונות / מחשבות / רגשות? האם לדומם יש תודעה? איך להנות בחיים? מי ברא את אלוהים? האם יש הבדל בין חלום למציאות? איך להשיג שלמות ואושר מוחלט? האם המציאות היא טובה או רעה? האם יש או אין אלוהים? מה יש מעבר לזמן ולמקום? למה יש רע בעולם? האם אפשר לדעת הכל? בשביל מה לחיות? למה העולם קיים? האם הכל אפשרי? איך להיות הכי חכם בעולם? מה המשמעות של החיים? האם באמת הכל לטובה? למה חוקי הפיזיקה כפי שהם? האם יש בחירה חופשית? אולי אנחנו במטריקס? האם יש משמעות לחיים? למה לא להתאבד? איך נוצר העולם? מהי תכלית ומשמעות החיים? למה יש רע וסבל בעולם? האם יש אמת מוחלטת? האם יש נשמה וחיים אחרי המוות? האם יש חיים מחוץ לכדור הארץ ויקומים מקבילים? איך נוצר העולם? מה יש מעבר לשכל וללוגיקה ועוד...

שקט נפשי אמיתי - הספר על: אינסוף, איך להתמודד עם טראומה ופוסט טראומה? איך להתמודד עם חלומות מפחידים וסיוטים בשינה? איך להתמודד עם אהבה אובססיבית? איך להתמודד עם רגשות אשם ושנאה עצמית? איך לשכוח אקסים ולא להתגעגע? מועקות נפשיות וייאוש? איך להתמודד עם לחץ? איך להתמודד עם הפרעות קשב וריכוז? איך להתמודד עם OCD / הפרעה טורדנית כפייתית / אובססיות / התנהגות כפייתית? איך להתמודד עם התקפי חרדה ופאניקה? איך להתמודד עם מאניה דיפרסיה ועם מצבי רוח משתנים? איך להתמודד עם פחד קהל ופחד במה / פחד להתחיל עם בחורות / פחד להשתגע / פחד לאבד שליטה / חרדת נטישה / פחד מכישלון / פחד מוות / פחד ממחלות / פחד לקבל החלטה / פחד ממחויבות / פחד מבגידה / פחד מיסטי / פחד ממבחנים / חרדה כללית / פחד לא ידוע / פחד מפיטורים / פחד ממכירות / פחד מהצלחה / פחד לא הגיוני ועוד? איך להתמודד עם עצבות? כעס ועצבים? איך להשיג איזון נפשי? איך להתמודד עם הזיות / דמיונות שווא / פרנויות / סכיזופרניה / הפרעת אישיות גבולית? איך להתמודד עם כל סוגי הפחדים והחרדות שיש? איך להתמודד עם שמיעת קולות בראש? דיכאון? איך להתמודד עם בעיות ריכוז והפרעת קשב וריכוז? איך להתמודד עם ביישנות וחרדה חברתית? איך להתמודד עם חרדות + פחדים של ילדים? איך להתמודד עם הפרעות התנהגות אצל ילדים? איך להתמודד עם תסמינים של חרדה? איך להתמודד עם בדידות? איך להתמודד עם אכזבות ועוד...

הצלחה אהבה וחיים טובים - הספר על: איך להתמודד עם אובססיות והתמכרויות? איך לפתח חשיבה יצירתית? איך להתמודד עם דיכאון ותחושות רעות? איך להצליח בראיון עבודה? איך להיגמל מהימורים? איך לפרש חלומות? איך לדעת איזה מקצוע מתאים לך? איך ליצור מוטיבציה ולהשיג מטרות? איך להשיג ביטחון עצמי? איך להיות מאושר ושמח? איך לא להישחק בעבודה? איך לחנך ילדים? איך לקבל החלטות? איך למצוא זוגיות? איך לדעת אם מישהו מתאים לך? איך להתמודד עם גירושין? איך לפתח יכולות חשיבה? איך ליצור אהבה? איך לשכנע אנשים ולקוחות? איך לעשות יותר כסף? איך להעביר ביקורת בונה? איך להאמין בעצמך? איך לשפר את הזיכרון? איך למכור מוצר ללקוחות? איך לשתול מחשבות? איך להצליח בזוגיות? איך לנהל את הזמן? איך לגרום למישהו לאהוב אותך? איך לטפל בהתנגדויות מכירה? איך להעריך את עצמך? איך להצליח בדיאטה ולשמור על המשקל? איך לשנות תכונות אופי? איך לחשוב בחשיבה חיובית ועוד...
רק כאן באתר! ✨ להנאתך, 10,000+ שעות של תכנים בלעדיים! ✨ מאת אליעד כהן!
לפניך חלק מהנושאים שבאתר... מה מעניין אותך?

חפש:   מיין:

נושאים נוספים לעיונך...
שפוי לחלוטין למכור מוצר בלי ביטחון עצמי מומחה לטיפול בסכיזופרניה הרמה נכונה של דברים כבדים לגרום לגבר להתאהב בך דחף מיני בלתי נשלט מבוא לטיפול בחרדות פחד להתחיל עם נשים מי שלא מאמין בעצמו? הערכה עצמית גבוהה אהבה או התמכרות התאהבות חד צדדית איך לא להיות עצוב? להגיע לאושר אמיתי לשנות נטייה מינית נוסחאות להצלחה בזוגיות קבלת החלטות בארגון איך להחליט מה הכי כדאי לעשות? להתמודד עם פחד לאבד שליטה איך מתמודדים עם חרדה כללית? איך אנשים מצליחנים חושבים? להיות אדם מצליח לגייס סמנכל מכירות הוזלת מוצרים להביא ילדים מוות של ילדה ריקנות רוחנית כוח התת מודע בת זוג חולה סכיזופרניה סיפור מקרה סכיזופרניה איך להפסיק לחשוב על האקס? האם אפשרי לשכוח לגמרי את האקס? שרירי האמה שרירי כתפיים אולי אין אלוהים? האם הרצון הוא אלוהים? משיכה מינית והארה רוחנית להיות מואר השכל של הספר להיות אלוהים לחזור להיות אלוהים השקעה בהון האנושי שבארגון איך מייצרים כסף? למה היא משמעות החיים שלי? משמעות החיים שגויה תשובה שלילית ללקוח אין כזה דבר פרסום שלילי רובוט או אדם פרדוקס הבחירה והידיעה לראות את העולם להיות בורא עולם עוד נושאים ...
האתר Yeda.EIP.co.il נותן לך תכנים בנושא מאמן לזוגיות, מאמן אישי קואצ'ינג, מאמן אישי בסקייפ בתחום אינסוף - ללא הגבלה! לקביעת פגישה אישית / ייעוץ טלפוני אישי / הזמנת הספרים - צור/י עכשיו קשר: 050-3331-331
© כל הזכויות שמורות לכותבי המאמרים המקוריים בלבד!

האתר פותח על ידי אליעד כהן
דף זה הופיע ב 0.2188 שניות - עכשיו 08_01_2026 השעה 11:50:44 - wesi4