ידע
להצליח
⭐⭐⭐⭐⭐
הדפסה שאלת המפתח ✔אינסוף - מבוא ✔אינסוף הוא מושג שזוכה במתמטיקה, בפילוסופיה, בתאולוגיה ובשפת היומיום למשמעויות... - ידע להצליח התחייבות! ל: להצליח...
הצטרף לחברים באתר!
שם
סיסמא
לחץ כאן
להתחבר לאתר!
💖
הספרים שמומלצים לך:
להצליח בחיים
ולהיות מאושר!






🖨אינסוף - מבוא
אינסוף הוא מושג שזוכה במתמטיקה, בפילוסופיה, בתאולוגיה ובשפת היומיום למשמעויות רבות ושונות. המשותף לרוב המשמעויות הללו הוא תפיסת האינסוף כדבר מה שתכולתו גדולה מכל דבר אחר, תהליך שלא יגיע לסופו לעולם. סימונו ברוב ענפי המתמטיקה הוא \ infty.

האינסוף במתמטיקה

במתמטיקה, ישנם שני סוגים עיקריים של אינסוף - זה הבא לתאר גודל של קבוצה שאינה סופית - גודל שכזה מכונה עוצמה. השני בא לתאר תהליכים גבוליים, ומשמעותו היא "כמה שנרצה" - כלומר, שאיפה לאינסוף פירושה שאנו יכולים להגיע למספר גדול כרצוננו. זהו אינסוף שמושתת אך ורק על אלמנטים סופיים, אך מאחוריו עומד תהליך אינסופי.

ישנן גם מערכות מספרים שכוללות בהן את האינסוף כמספר, או מרחבים שבהם האינסוף נכלל בתור איבר של המרחב. בכל המקרים הללו הדבר גורר שינוי של כמה מהתכונות המתקיימות במערכת, ולעתים אין האינסוף שהוסף אליהן מהווה יותר מסימון לצורכי נוחות בלבד.

האינסוף כתהליך הגדל כרצוננו

תכונתם של המספרים הטבעיים, שלכל אחד מהם יש מספר גדול ממנו, הייתה ידועה כבר ליוונים הקדמונים (וזכתה לשם אקסיומת ארכימדס). אם נתבונן בסדרה שאיבריה הם המספרים הטבעיים, נראה כי ככל שאנו מתקדמים בסדרה, הערכים של איברי הסדרה הולכים וגדלים בצורה כזו שעבור כל מספר טבעי, החל ממקום מסוים יהיו כל איברי הסדרה גדולים ממנו. זוהי דוגמה לתהליך של שאיפה לאינסוף, אף שהאינסוף בו בא לידי ביטוי רק באמצעות מושגים סופיים. הגדרה פורמאלית של תהליך הגדל לאינסוף ניתנה במאה ה - 17, בעת העיסוק במושג הגבול, בתחילת יצירתו של החשבון האינפיניטסימלי. במסגרת דיון זה הנהיג המתמטיקאי האנגלי ג'ון ואליס בשנת 1655 את הסמל \ infty למושג האינסוף. הסמל בא לידי שימוש, למשל, בביטוי מהצורה \ lim_ {n \to \infty} x_n שאותו יש לקרוא " הגבול של הסדרה \ x_n כאשר n שואף לאינסוף" (ראו הרחבה בעניין זה בערך גבול).

האינסוף כגודל מוחשי

הפיתוח העשרוני האינסופי של 0.999... השווה גם ל - 1 - אינסוף

העיסוק באינסוף כגודל מוחשי בא לידי ביטוי בפרדוקס של גלילאו, המדגים של תכונותיהן הלא אינטואיטיביות של קבוצות שמספר איבריהן אינו סופי (קבוצות אינסופיות). גלילאו הראה כי ניתן ליצור התאמה שממנה נובע כי מספרם של המספרים הטבעיים זהה למספרם של המספרים הריבועיים, אף שתוצאה זו סותרת לכאורה את העובדה הברורה, שיש מספרים טבעיים שאינם ריבועיים. מכאן הסיק גלילאו שמושגי ה"גדול", "קטן" ו"שווה" המוכרים לנו מקבוצות סופיות אינם תקפים באותה צורה עבור קבוצות אינסופיות, וניסיון לשימוש בהם מוביל לסתירה. המחשה נוספת לתכונות המפתיעות של קבוצות אינסופיות ניתנת בסיפור המלון של הילברט.

טיפול פורמאלי בקבוצות אינסופיות נוצר על ידי גיאורג קנטור בסוף המאה ה - 19, במסגרת פיתוחה של תורת הקבוצות. מונח העוצמה נוצר במסגרת זו כדי לבטא את גודלה של קבוצה שמספר איבריה אינו סופי, כגון קבוצת המספרים הטבעיים או קבוצת המספרים הממשיים. במסגרת זו, לקבוצת המספרים הטבעיים ולקבוצת המספרים הריבועיים יש אותה עוצמה, אף על פי שאחת הקבוצות מכילה ממש את רעותה. ריכרד דדקינד הגדיר קבוצה אינסופית ככזו שהיא שוות עוצמה לקבוצה המוכלת בה ממש.

הישג גדול של קנטור היה ההוכחה שאין מקום לדבר על גודל אינסופי יחיד, אלא יש סוגים רבים של גדלים אינסופיים. העוצמה של קבוצת המספרים הממשיים, למשל, גדולה מזו של קבוצת המספרים הטבעיים. את העוצמה של המספרים הטבעיים סימן קנטור באות העברית \ \ aleph_0 (קרי: אלף אפס), ואת עוצמת הממשיים סימן באות \ \ aleph.

יתרה מזו, משפט קנטור קובע שעוצמתה של קבוצת החזקה של A גדולה מעוצמתה של A, ובפרט אין עוצמה 'גדולה ביותר'. ניתן להוכיח כי קבוצת כל העוצמות היא כה גדולה עד כי לא ניתן לדבר על העוצמה שלה עצמה (כלומר, על פי תורת הקבוצות האקסיומטית, אוסף העוצמות גדול מכדי להיות קבוצה, והוא נחשב למחלקה). לקבוצת כל העוצמות (ולקבוצות השקולות לה), שלא ניתן לטפל בהן במסגרת תורת הקבוצות האקסיומטית, קרא קנטור "האינסוף המוחלט".

פעולות באינסוף

יש כמה דרכים שבהן ניתן לצרף את הסמל \ \ infty למערכות מספרים מוכרות. בכל אחת מדרכים אלה מקבלות פעולות מסוימות משמעות, ובאותה עת מאבדים כמה מן התכונות המקוריות של המערכת. למערכות שונות הכוללות את סמל האינסוף יש שימושים שונים בהקשרים מתמטיים שונים, ולא קיימת דרך מוסכמת, "נכונה", לטפל באריתמטיקה של הסמל הזה.

דרך אחת לבצע פעולות באינסוף היא לספח לישר הממשי, בתור קבוצה סדורה, שתי נקודות חדשות: \ \ infty ו - \ - \ infty. מבחינת יחס הסדר, המוסכמה היא ש - \ - \ infty < a < \ infty לכל a ממשי, הקבוצה נשארת סדורה לינארית. פעולת החיבור מוגדרת על - פי הכללים \ \ infty+a= \ infty ו - \ - \ infty+a= - \ infty לכל a ממשי, וכך מוגדרות כל האפשרויות לחבר שני איברים של הקבוצה החדשה, למעט \ - \ infty+\ infty, ביטוי שאינו מוגדר. אפשר להרחיב את הגדרת הכפל באופן דומה, כאשר הביטוי \ 0\cdot \infty נשאר לא מוגדר. פעולת החילוק מקיימת את הכלל \ \ frac{a} { \ infty} =0 לכל a ממשי, וגם כאן, הביטוי \ \ frac{ \ infty} { \ infty} אינו מוגדר. הקבוצה החדשה אינה שדה (משום שהפעולות אינן מוגדרות שם באופן מלא). לכך שביטויים מסוימים נשארים בלתי מוגדרים יש סיבה: אם נקבע למשל ש - \ \ infty-\ infty=0, נצטרך לקבל גם את השוויון המופרך \ 1= 1+0 = 1+( \ infty-\ infty) = (1+\ infty) - \ infty= \ infty-\ infty=0, או לוותר על האסוציאטיביות של החיבור.

ראו גם שדה המספרים הסוריאליסטיים.

האינסוף בגאומטריה

אחת התוצאות הראשונות הנובעות מהאקסיומות של הגאומטריה היא שכל ישר מכיל אינסוף נקודות. תוצאות נוספות הן שבכל מישור נמצאים אינסוף נקודות שונות ואינסוף ישרים שונים, וכן ישנם אינסוף מישורים שונים.

אחת הדרכים בהן נוהגים להתבונן על המישור המרוכב היא כעל כדור, המכונה הספירה של רימן, שמכיל את כל איברי המישור המרוכב בתוספת נקודה אחת, בקוטב הצפוני של הכדור - האינסוף. זוהי דוגמה למצב שבו האינסוף הוא נקודה לכל דבר במרחב, והיא מאפשרת טיפול נוח בפונקציות שמקבלות ערכים אינסופיים.

בגאומטריה פרויקטיבית, מוסיפים נקודה שבה נחתכים כל הישרים. זוהי נקודת האינסוף.

האינסוף בקוסמולוגיה

התגלית לפיה היקום מתפשט העלתה בהכרח את השאלה האם התפשטות היקום היא תהליך שיימשך עד אינסוף או שתהליך זה ייעצר בשלב כלשהו. שאלה זו היא שאלת מפתח בקוסמולוגיה.

האינסוף בפיזיקה

באלקטרודינמיקה קוונטית ובתורת השדות הקוונטית, שני ענפים של תורת הקוונטים שהיא נושא מרכזי בפיזיקה המודרנית, עלתה בעיה של משוואות המציגות מציאות פיזיקלית ותוצאתן אינסוף. הפיזיקאי ריצ'רד פיינמן הציע פתרון לבעיה זו, הקרוי רנורמליזציה.

האינסוף באמנות

הצייר מוריץ קורנליס אשר הרבה לחקור את מושג האינסוף ביצירותיו. רבות מיצירותיו מציגות דמויות ההולכות וקטנות לאינסוף. דוגמה מובהקת לכך היא הציור "גבול מעגל 4 - שמים וגיהנום" משנת 1960.

האינסוף בפילוסופיה

בירור ראשוני של המשמעות הפילוסופית של מושג האינסוף מופיע בפרדוקסים של זנון אותם הגה ביוון העתיקה במאה החמישית לפנה"ס. טיעוניו עוסקים בפרדוקסליות של התנועה ושל הזמן כאשר מחלקים גודל סופי נתון לחלקים רבים והולכים לבלי גבול. פתרון לפרדוקסים אלה נמצא רק בביסוס התאורטי של מושג האינסוף במתמטיקה, החל מהמאה ה - 17.

תיאור של האינסוף מופיע בכתביו של אריסטו:

תמיד אפשר לחשוב על מספר גדול יותר, משום שמספר הפעמים שבהן ניתן לחלק גודל נתון לשניים אינו מוגבל. לפיכך האינסוף הוא פוטנציאלי ולעולם לא אקטואלי. מספר החלקים שביכולתנו ליצור גדול מכל מספר נתון.

רעיונותיו של אריסטו נוסחו ביתר פירוט בימי הביניים, למשל על ידי הפילוסוף בן המאה ה - 14 ויליאם איש אוקאם.

האינסוף מופיע גם בתנ"ך. בספר איוב (פרק ה פסוק ט'): " (עושה גדֹלות ואין חקר) נפלאות עד אין מספר", כלומר: עד אינסוף (בעוד שהמילה "עד" מעידה בעברית על הגעה אל גבול, ואכן גם במתמטיקה משמש האינסוף (אנ') כגבולם של כל המספרים הסופיים).

בקבלה, מכונה התגלות האל כ"אור אין סוף", כלומר אור שאיננו מוגבל ובעל פרטים מוגדרים, כי אם מציאות מופשטת, ובעלת כוחות בלתי מוגבלים.
מקוריות אינטואיטיבי מוסכמות טיעונים הקוונטים פתרון בעיות התקדמות מוחלטות סיפור להתבונן ויתור אינסוף
ספרים מומלצים עבורך - ספרים על שאלת המפתח
 👈1 ב 150  👈4 ב 400     ☎️ 050-3331-331    שליח עד אליך - בחינם!
להיות אלוהים, 2 חלקים - הספר על: שאלת המפתח, האם יש נשמה וחיים אחרי המוות? למה יש רע בעולם? האם יש משמעות לחיים? האם יש חיים מחוץ לכדור הארץ ויקומים מקבילים? איך נוצר העולם? איך נוצרים רצונות / מחשבות / רגשות? מי ברא את אלוהים? האם הכל אפשרי? מה המשמעות של החיים? האם המציאות היא טובה או רעה? האם לדומם יש תודעה? האם יש או אין אלוהים? האם יש הבדל בין חלום למציאות? האם אפשר לדעת הכל? מה יש מעבר לשכל וללוגיקה? האם יש אמת מוחלטת? אולי אנחנו במטריקס? איך להנות בחיים? איך להיות הכי חכם בעולם? מה יש מעבר לזמן ולמקום? איך להיות מאושר? למה חוקי הפיזיקה כפי שהם? למה לא להתאבד? האם באמת הכל לטובה? למה העולם קיים? איך נוצר העולם? האם יש בחירה חופשית? בשביל מה לחיות? איך להשיג שלמות ואושר מוחלט? מהי תכלית ומשמעות החיים? למה יש רע וסבל בעולם ועוד...

שקט נפשי אמיתי - הספר על: שאלת המפתח, איך להתמודד עם טראומה ופוסט טראומה? איך להתמודד עם עצבות? איך להתמודד עם רגשות אשם ושנאה עצמית? איך להתמודד עם אהבה אובססיבית? איך להתמודד עם אכזבות? איך להתמודד עם כל סוגי הפחדים והחרדות שיש? איך להתמודד עם הזיות / דמיונות שווא / פרנויות / סכיזופרניה / הפרעת אישיות גבולית? איך להתמודד עם פחד קהל ופחד במה / פחד להתחיל עם בחורות / פחד להשתגע / פחד לאבד שליטה / חרדת נטישה / פחד מכישלון / פחד מוות / פחד ממחלות / פחד לקבל החלטה / פחד ממחויבות / פחד מבגידה / פחד מיסטי / פחד ממבחנים / חרדה כללית / פחד לא ידוע / פחד מפיטורים / פחד ממכירות / פחד מהצלחה / פחד לא הגיוני ועוד? איך להתמודד עם בדידות? איך להתמודד עם לחץ? איך להתמודד עם שמיעת קולות בראש? דיכאון? כעס ועצבים? איך להתמודד עם התקפי חרדה ופאניקה? איך להתמודד עם חרדות + פחדים של ילדים? איך לשכוח אקסים ולא להתגעגע? איך להתמודד עם חלומות מפחידים וסיוטים בשינה? איך להתמודד עם הפרעות קשב וריכוז? איך להתמודד עם מאניה דיפרסיה ועם מצבי רוח משתנים? איך להתמודד עם הפרעות התנהגות אצל ילדים? מועקות נפשיות וייאוש? איך להתמודד עם ביישנות וחרדה חברתית? איך להשיג איזון נפשי? איך להתמודד עם בעיות ריכוז והפרעת קשב וריכוז? איך להתמודד עם תסמינים של חרדה? איך להתמודד עם OCD / הפרעה טורדנית כפייתית / אובססיות / התנהגות כפייתית ועוד...

הצלחה אהבה וחיים טובים - הספר על: איך לפתח יכולות חשיבה? איך להשיג ביטחון עצמי? איך להעביר ביקורת בונה? איך להתמודד עם דיכאון ותחושות רעות? איך לפרש חלומות? איך להצליח בראיון עבודה? איך לדעת איזה מקצוע מתאים לך? איך לא להישחק בעבודה? איך להיות מאושר ושמח? איך לעשות יותר כסף? איך לטפל בהתנגדויות מכירה? איך לגרום למישהו לאהוב אותך? איך לשכנע אנשים ולקוחות? איך להיגמל מהימורים? איך להתמודד עם אובססיות והתמכרויות? איך ליצור מוטיבציה ולהשיג מטרות? איך לשתול מחשבות? איך להצליח בדיאטה ולשמור על המשקל? איך לקבל החלטות? איך לחנך ילדים? איך ליצור אהבה? איך למצוא זוגיות? איך לשפר את הזיכרון? איך לחשוב בחשיבה חיובית? איך לפתח חשיבה יצירתית? איך להצליח בזוגיות? איך למכור מוצר ללקוחות? איך לנהל את הזמן? איך לשנות תכונות אופי? איך להתמודד עם גירושין? איך לדעת אם מישהו מתאים לך? איך להאמין בעצמך? איך להעריך את עצמך ועוד...
רק כאן באתר! ✨ להנאתך, 10,000+ שעות של תכנים בלעדיים! ✨ מאת אליעד כהן!
לפניך חלק מהנושאים שבאתר... מה מעניין אותך?

חפש:   מיין:

נושאים נוספים לעיונך...
מובן מאליו סיבתיות למתקדמים מתחת לשכל השפעות הסביבה בעיה ללא פתרון חוסר סימטריה פחד מקורונה לא לפחד להשתגע איך לבנות ביטחון עצמי אצל ילד? למה אני לא מעריך את עצמי? אהבה ללא תנאים בזוגיות איך לאהוב שעמום? אושר נצחי בעולם משתנה הנאה של אושר נגד יחסים פתוחים מה הסיכוי שהזוגיות תצליח? שיקול זר בקבלת החלטה ללמוד לקבל החלטה להתמודד עם עצבות ודיכאון להתמודד עם אסון התמודדות עם חרדת כישלון להאמין שתצליח הטמעת מידע המכירות במחלקת המכירות התנגדות של לקוח הרגשה של שעמום אצל ילדים ענישה כחינוך ביקורת על מורה רוחני שינוי בתת מודע האם יש מחלות נפש אצל ילדים? לטפל בפסיכוזה למה כדאי לחזור לאקסית? הדחקה של האקס שרירי כתפיים ישבן חטוב למה אלוהים לא ברא? האם אלוהים אחד? סוגים של הארה רוחנית הארה קורית להבין את הספר להיות אלוהים להיות אלוהים בכוחות עצמך לפתח את השכל ולעשות כסף בזבוז כסף יעשה אותך מיליונר אושר ומטרת החיים מה תכלית החיים? הנאה בסקס להתחפר בשלילי בחירה טוב או רע הבדל בין אדם לרובוט התרחבות היקום אלוהים ברא את העולם עוד נושאים ...
האתר Yeda.EIP.co.il נותן לך תכנים בנושא מאמן אישי למנהלים, ייעוץ נפשי, יועץ טיפולי בתחום שאלת המפתח - ללא הגבלה! לקביעת פגישה אישית / ייעוץ טלפוני אישי / הזמנת הספרים - צור/י עכשיו קשר: 050-3331-331
© כל הזכויות שמורות לכותבי המאמרים המקוריים בלבד!

האתר פותח על ידי אליעד כהן
דף זה נוצר ב 0.4512 שניות - עכשיו 07_01_2026 השעה 08:32:43 - wesi4