הודפס מהאתר Yeda.EIP.co.il/?key=6749815
פילוסופיה - אי שלמות שואפת לאינסוף - חלק 1

3. אי - שלמות שואפת לאינסוף

יש הרואים דברים כפי שהם ושואלים: למה?

ואחרים חולמים על דברים כפי שיכלו להיות ושואלים: למה לא?

(ג'ורג' ברנרד שו)

היכן עומדים אנו כיום בנוגע לשאלות שהעסיקו את אבות המדע? ספר זה מתאר את התפתחות הפיסיקה באופן כרונולוגי, אבל בפרק זה נסטה לשעה קלה מסדר הזמנים כדי לבדוק את הרפים הגבוהים שהציבו לנו היוונים ולשאול איזה מהם עברנו מאז ואיזה לא. זו תהיה הזדמנות לתרגל את הדקדוק של המדע, ומה שיותר כיף - את המוסיקה שלו.

3. 1 חתירה תחת היסודות

לא רק ספר כללים היה ה"יסודות" של אוקלידס (ר' פרק 2. 7) אלא גם יצירת מופת: בכל הדורות, חוקרים מתחומים שונים ניסו לחקות את האלגנטיות של "כמה שפחות הנחות, כמה שיותר הוכחות. " המתמטיקאים עצמם שאלו: אולי נשמיט עוד אקסיומה ונקבל בניין יותר חזק? כאן מתעוררת בעיה: כל חכמולוג יכול להחליט לזרוק איזו אקסיומה שמתחשק לו, אבל אז יתמוטט כל הבניין. החוכמה היא לבנות מחדש בניין יציב על האקסיומות שנותרו! כמה מתמטיקאים (הבולט שבהם גַאוּס, 1777 - 1855) נטפלו לאקסיומה החמישית (ר' 2. 7) בגיאומטריה האֵוּקלידית: היא ארוכה מדי ואפילו אוקלידס השתמש בה רק כשהיה מוכרח. תחילה ניסו לגזור אותה מהאקסיומות האחרות ונכשלו, ואז ניסו להניח אקסיומה חליפית ולבנות עליה את כל הגיאומטריה מהתחלה. אם ייתקלו בסתירות, זו תהיה הפרכת האקסיומה, אבל אז היא כבר לא תהיה אקסיומה! למרבה העניין - עוד עדות לגאונותו של אוקלידס - הגיאומטריות החליפיות שנבעו מהאקסיומה החדשה היו די חולניות אבל עקביות לחלוטין. תשאלו: בשביל מה זה טוב? יענו המתמטיקאים: אנחנו עושים לא רק מה ששימושי אלא מה שנראה לנו יפה, והגיאומטריה החליפית הזאת היא יפה! עברו מאות שנים, בא איינשטיין וגילה שגיאומטריה כזאת נותנת בסיס לתורת היחסות הכללית (ר' פרק 14). הנה שוב הפרדוקס האפלטוני: מושגים מופשטים, שהומצאו על ידי האדם כשעשוע אינטלקטואלי, התגלו כתואמים את המציאות הממשית במקרים שאף אחד לא דמיין לעצמו.

המבנה הלוגי הזה אומץ גם במדע. הנזיר האנגלי ויליאם מאוקאם (1285 - 1349) טבע את הכלל הידוע כ"תער אוקאם" האומר בצורתו המודרנית כך: בהינתן כמה תיאוריות המסבירות את אותה תופעה, עדיפה זו המסתמכת על פחות הנחות - יסוד. ואמנם, הניסיון הראה שכאשר הצליח מישהו לוותר על אחת מהנחות - היסוד של תיאוריה מבלי לפגוע בלכידותה ובכוח ההסבר שלה, התיאוריה שהתקבלה אחרי הקיצוץ הייתה, לעתים קרובות, מדויקת יותר ואף הניבה גילויים חדשים. הפלא הזה - א) השמטת הנחות - יסוד שהן לכאורה הכרחיות, ב) בניית בניין חדש על הבסיס הצר יותר שנשאר, ג) הגילוי שדווקא הבניין הזה חזק ורחב יותר, ו - ד) בנוסף לכל גם תואם חלקים מהמציאות עוד בטרם התגלו - חוזר בכל תולדות המדע.

3. 2 הרחבת מושג המספר

כך החלו ערעורים במתמטיקה גם נגד יסודות תורת פיתגורס. ברור שהרבה מהמתמטיקה של הפיתגוראים הייתה סתם נומרולוגיה: מספרים זוגיים נחשבו "נקביים" ואי - זוגיים "זכריים, " ובהמשך נעשו חלקם "קדושים" ואחרים "טמאים" וכך נפרץ סכר השטויות. כמו כן התברר שגם אוהבי ההרמוניה, כשאומרים להם משהו שלא מוצא חן בעיניהם, מסוגלים להגיב בצורה לא הכי הרמונית. פיתגוראי אחד, היפַּסוּס, גילה משהו מטריד שנבע דווקא ממשפט המשולש המפורסם של המורה: אם ניקח יֶתֶר של משולש ישר - זווית ושווה - שוקיים ונבדוק מה היחס בין אורכו לאורך אחד הניצבים, נגלה ששום מידה בעולם - סנטימטרים, בלאטות, אצבעות - לא תוכל לבטא את היחס הזה במספרים רגילים כמו 3: 2, בסתם שבר כמו 352 / 361, או אפילו במספר עשרוני מחזורי כמו 30. 33. כל מה שנקבל יהיה המספר העשרוני המעצבן... 1. 414213 הנמשך עד אינסוף בלי לחזור לעולם על עצמו. למספר כזה אנו קוראים כיום "אי - רציונאלי, " לומר, "לא - חלוקתי" (יחס = ratio). זה היה הראשון במשפחת מספרים כאלה שהתגלו כבעלי חשיבות עליונה, כמו ה"פִּי" היווני, המוכר יותר בהיגויו האנגלי פַּי, שהוא היחס בין היקף מעגל לקוטרו:... 3. 141592. הייתה זו מהלומה לאמונה שהמספרים השלמים הם יסוד העולם. מה שעצוב הוא שלעובדה הלא - יפה הזאת, דהיינו היעדר המידה המשותפת, יש הוכחה מוחצת שהיא עצמה יפה מאוד! 13 ומה שהכי עצוב, מספר אירציונאלי כזה הוא גם ה"פִי" שנפגוש בהמשך, הקשור דווקא ביופי!

הפיתגוראים, כך מסופר, כל כך התרגזו על היפַּסוּס עד שהטביעו אותו בים בתקווה שאף אחד לא ישמע על השערורייה. הם עצמם הכחישו את הסיפור, כי הם היו, כזכור, צמחונים נחמדים שהקפידו לא לפגוע אפילו בקטניות. הם הודו, עם זאת, כי השביעו כל חבר חדש בשבועת סודיות, וכך הלך הרבה מהידע שלהם לאיבוד. הנה, אידיאלים טובים יכולים להוביל למעשים רעים. די להיזכר בפשעי הכמרים הקתוליים שנעשו בשם אותו ספר בו מופיע מכתבו המרטיט של יוחנן אל הקורינתיים על האהבה, או בצרפתים שצרחו כל היום "לִיבֵּרטֶה! אֵגַלִיטֶה! פרַטֵרנִיטֶה! " כשעם כל "טֶה" יורד להב הגיליוטינה על צווארו של עוד מסכן בשם החירות, השוויון והאחווה. יש כאן לקח חשוב: גם אידיאל היופי, אפילו אם אינו מוביל לשפיכות דמים, מסוגל להתעות למקומות בהחלט לא יפים.

מושג המספר המשיך להתרחב גם אחרי הכנסת המספרים האירציונליים. אמנם המספרים עצמם הם משהו דמיוני, אבל אנחנו יכולים לפחות להלביש בהם משהו - קלמנטינות, חושחשים וכדומה. בהדרגה הופיעו מספרים יותר ויותר מוזרים. כדאי לציין כי בימי קדם אפילו "אחד" לא נחשב למספר כי "מספר" היה, מעצם הגדרתו, רבים! 32 מכאן ניתן להבין כמה קשה היה לקבל ש"אפס" הוא מספר עד שהערבים הביאו אותו מהודו. אבל אז בא חכם אחד ושאל: אם המספרים הולכים ויורדים באחד עד האפס, מה יקרה אם נמשיך ונחסר אחד מהאפס עצמו? כך נולדו המספרים השליליים, 1 -, 2 - וכו' והיה צורך להרחיב את האריתמטיקה כדי שתוכל לטפל גם בהם. חיש מהר התברר שהמספרים המשונים האלה יכולים לעזור הרבה בבעיות מעשיות, כמו לאפשר לבנק לשמור לנו "מינוס. " כיוון שכך, בא חכם יותר גדול ושאל: מה השורש הריבועי של מספר שלילי כזה? וזה כבר בהחלט מוגזם. שורש ריבועי של 4, למשל, פירושו מספר שאם נכפיל אותו בעצמו נקבל 4. כך... וכו'. אבל הכפלה של כל מספר בעצמו, אפילו אם הוא שלילי, נותנת מספר חיובי! הפיתגוראים, מן הסתם, היו מזמינים את החכם הזה לטיול קצר בים כמו שעשו להיפסוס, אבל בדור ההוא - זו הייתה איטליה של ראשית הרנסאנס, אליה נתוודע בפרקים הבאים - היו מתמטיקאים שדווקא שמחו שהוא מספק להם תעסוקה. הם סימנו את המספר המשונה ב i (מלשון imaginary) והמציאו עבורו ציר מספרים "מדומים, " ניצב לציר המקובל, ועליו סידרו את כל השורשים הבלתי - אפשריים האלה: i, שהוא השורש הריבועי של 1 -, ואחריו 2i, 3i וכו'. גם הפעם, מתחת לאפס הוסיפו מספרים מדומים שליליים, i -, 2i -, 3i - וכו', כך שהתקבל ציר מספרים שלם המאונך לציר הרגיל. על מערכת - הצירים הדו - ממדית הזאת בנו תחום מתמטי חדש. עכשיו לכו תנסו להבין מהי קלמנטינה מדומה, שהעלאתה בריבוע תיתן קלמנטינה שלילית, שהעלאתה בריבוע תיתן סוף - סוף קלמנטינה שאפשר לאכול.

צחוק צחוק, אבל גם כאן קרה הפלא: המספרים המדומים התגלו כשלב הכרחי בפתרון הרבה בעיות מעשיות. במאה ה - 19 נמצא להם שימוש גם בתיאוריה האלקטרומגנטית ובמאה ה - 20 התגלה שהם חיוניים לחישוב התופעות המוזרות של תורת הקוונטים (ראו פרקים 15 עד 16). מי יגלה עפר מעיני אפלטון! המתמטיקאים, מסתבר, לא המציאו אלא גילו משהו החבוי ביסוד המציאות החומרית!

טענה זו, שתגלית מתמטית היא גילוי ולא המצאה, יכולה להסביר את הצלחת התוכנית "פחות הנחות, יותר הוכחות. " הרי לא כל מי שמערער על אקסיומה הופך לממציא ענף חדש. להיפך, ברוב המקרים יוצא לנו משהו חסר - ערך. אם נזרוק את כל האקסיומות ונסתפק ב"אלוהים ברא את העולם" או "כל מה שאנחנו רואים זה רק בראש שלנו, " נוכל לבנות על אקסיומה בודדת כזאת תיאוריה המסבירה כל דבר, אבל מהתיאוריה הזאת, כפי שתראו בהמשך, לא ינבע שום ניבוי חדש. במדע, החוכמה היא להשמיט את האקסיומה הנכונה - נכון יותר: הלא נכונה - ורק אז, על הבסיס הנותר, יתרומם בניין גדול יותר.

3. 3 מעבר למספר

הפליאה של אפלטון - שהחוקים האריתמטיים החלים על שלוש קלמנטינות חלים גם על שלושה סטרפטוקוקים, שלושה גניקולוגים ועל כל שאר העצמים - רק הלכה והעמיקה מאז, כי תורת המספרים היא רק הקומה הראשונה בבניין המתמטיקה. אם ה"שלוש" המופשט הוא מושג החל על כל העצמים, בואו נחשוב על מושג מופשט יותר, נאמר x, החָל על כל המספרים. אם מעולם לא ראינו את ה"שלוש" עצמו, במנותק ממיקרובים או מרופאים, בוודאי שמעולם לא ראינו x. האם גם ההפשטה הזאת תניב משהו מעניין?

המילה "אלגברה" מקורה בכותרת ספרו של המתמטיקאי והאסטרונום הפרסי אבו ג'עפר אל כְוָּרִיזמִי (780 - 845) "חִסַּאבּ אַל - גַ'אבְּר וּאַל - מוּקַ'אבָּלַה (חשבון ההשלמה והאיזון). " גם שמו של אל - כְוָּרִיזמִי עצמו התגלגל למושג ה"אלגוריתם, " המציין שורה קבועה של פעולות מתמטיות. האלגברה מחליפה את המספרים ב"נעלמים" (אותיות), ואלה מגלים חוקיות יסודית יותר. זהו צעד נוסף בהפשטה המתמטית: כמו שהשוויון האריתמטי 3 + 3=6 נכון לגבי כל שלישייה ושישייה של עצמים שנציב במקום שני המספרים, כך גם השוויון האלגברי נכון לגבי כל שלושה מספרים שנציב במקום שלושת הנעלמים.

הנה חידה אלגברית, פשוטה להפליא ומפתיעה באותה מידה, הממחישה את יכולתה של המתמטיקה להצביע מיד על עובדה שהשכל הישר יצליח לגלות רק אחרי זמן רב או אפילו יסרב להאמין לה. יהא כדור שהרדיוס שלו הוא מטר אחד, וסביבו קשור חבל. החבל יוצר אם כן מעגל, שהיקפו הוא גם היקף הכדור. עכשיו נאריך את החבל הקשור סביב הכדור במטר אחד, וניתן למעגל להתרחב במידה שווה סביב הכדור. בכמה גדל רדיוס המעגל החדש? אם תעשו את החישוב, תמצאו שהתוספת של מטר אחד להיקף המעגל מאריכה את הרדיוס ב 0. 15915 מ', כלומר המעגל שיוצר החבל סביב הכדור גבה בכמעט 16 ס"מ - גובה שכל חתול יעבור מתחתיו בנוחות.

יפה, ועכשיו החליפו את הכדור שלנו בכדור הרבה יותר גדול, נאמר, כגודל כדור הארץ, והקיפו גם אותו בחבל. החבל יוצר מעגל ענק שהרדיוס שלו 6, 378, 135 מטר והיקפו 40, 075, 160 מטר, וגם הוא קשור סביב הכדור בצורה כה הדוקה שאפילו קרציה לא תוכל לעבור תחתיו. שוב, הוסיפו מטר אחד איפה שהוא לאורך החבל ותנו למעגל להתרחב במידה שווה סביב הכדור. בכמה גדל רדיוס המעגל החדש? הציבו את המספרים במשוואת היקף המעגל, וכמה הקלקות על המחשבון שלכם יתנו גודל שכל חתול יעבור מתחתיו בנוחות.

רגע, מה קורה פה?! הוספנו רק מטר להיקף כדור - הארץ כולו ושוב תפח כל המעגל בכמעט 16 סנטימטרים כמו בפעם הקודמת? ברור שזו טעות! בואו, אם כן, נקיף בחבל כדור עוד יותר גדול, נאמר, בגודל הגלקסיה, ונאריך גם את החבל הזה במטר אחד בלבד. מה רדיוס גלקסיית שביל החלב? לומר את האמת - זה לא משנה. לכו תמצאו, תעשו את החישוב, וכשתגמרו, יוכל חתול לעבור בנוחות בכל מקום, על פני מיליוני שנות - אור, דרך ה - 16 ס"מ שמתחת לחבל המקיף את כדור הגלקסיה.

הנה תרגיל משלים: קצצו חזרה מטר אחד מהחבל המקיף את הגלקסיה, מתחו וחברו אותו מחדש. עכשיו לא יוכלו שום חתול ושום קרציה על פני כל מיליוני שנות - האור המשתרעים סביב הכדור לעבור תחת החבל. ואפשר גם כך: הוסיפו 16 ס"מ לרדיוס הגלקסיה כולה, כך שהיא תתפח בשיעור זה לכל הכיוונים על פני מיליוני שנות - אור. התוספת להיקפה? מטר אחד.

עם המסקנה הזאת תוכלו להשלים בכמה דרכים: א) אחרי הצבות של כל מיני מספרים גדולים וקטנים וחישובי התוצאות, ב) אחרי אימוץ החשיבה הויזואלית, ג) אחרי הבנת הקשר האלגברי בין ההיקף לרדיוס. מבט במשוואת היקף המעגל מראה לנו מיד: אין בה שום התייחסות לגודל המעגל. לכן - הגיוני או לא - תוספת מטר להיקף מעגל תגדיל את הרדיוס בכ 16 ס"מ בין אם מדובר בכדורגל או בגלקסיה. מסקנה: החשיבה המתמטית יכולה לראות דברים מסוימים טוב יותר מהשכל הישר. וזאת לא מפני שהיא מנוגדת לו אלא כי היא חסינה לכמה מהמלכודות האורבות לחשיבה הויזואלית.

מה הייתה ההפשטה הבאה במתמטיקה? אם המשוואה האריתמטית פועלת על מספרים והמשוואה האלגברית פועלת על אותיות המייצגות מספרים, המשוואה הדיפרנציאלית פועלת על פונקציות, שהן עצמן מעין משוואות. גם כאן, כפי שנראה בפרק 8. 8, רמת ההפשטה החדשה מאפשרת טכנולוגיה מתקדמת עוד יותר. מה לגבי אותם תחומי מתמטיקה מופשטים לחלוטין שאין להם כל שימוש? זה בדיוק העניין: אין להם שימוש כיום, אבל כפי שנראה בהמשך כבר היו ענפים רבים של המתמטיקה העיונית שהתגלו מאוחר יותר כמתאימים לטיפול בבעיה מציאותית כלשהי. נראה, על כן, כי כוחה של המתמטיקה גדול יותר ככל שהיא מופשטת יותר.

* פילוסופיה - אי שלמות שואפת לאינסוף - חלק 2.

© כל הזכויות שמורות לכותבי המאמרים המקוריים בלבד!

האתר פותח על ידי אליעד כהן